1
|
Chen X, Mo L, Zhang L, Huang L, Gao Z, Peng J, Yu Z, Zhang X. Taxonomic Diversity, Predicted Metabolic Pathway, and Interaction Pattern of Bacterial Community in Sea Urchin Anthocidaris crassispina. Microorganisms 2024; 12:2094. [PMID: 39458402 DOI: 10.3390/microorganisms12102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Bacterial assemblages associated with sea urchin are critical to their physiology and ecology within marine ecosystems. In this study, we characterized the bacterial communities in wild sea urchin Anthocidaris crassispina captured in Daya Bay, South China Sea. A total of 363 amplicon sequence variants belonging to nine phyla and 141 genera were classified from intestine, body surface, and surrounding seawater samples. Proteobacteria, Firmicutes, and Bacteroidetes were the dominant bacteria phyla found in this study. A network analysis of bacterial interspecies interactions revealed varying complexity, stability, connectivity, and relationship patterns across the samples, with the most intricate network observed in the surrounding seawater. Metagenomic predictions highlighted the distinct bacterial metabolic pathways, with significant differences between intestine and seawater samples. Notably, pathways associated with polysaccharide degradation, including chitin derivatives, starch, and CoM biosynthesis, were markedly abundant, underscoring the gut microbiota's key role in digesting algae. In addition, other metabolic pathways in intestine samples were linked to immune response regulation of sea urchins. Overall, this study provides a comprehensive overview of the bacterial community structure and potential functional roles in A. crassispina.
Collapse
Affiliation(s)
- Xinye Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Li Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Lin Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Liyu Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ziqing Gao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Peng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zonghe Yu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Tsoukalas D, Hamed I, Hoel S, Lerfall J, Jakobsen AN. Effect of harvesting season and location on the microbial quality and community composition of the edible sea urchin (Echinus esculentus) gonads. Food Microbiol 2024; 123:104594. [PMID: 39038897 DOI: 10.1016/j.fm.2024.104594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024]
Abstract
Despite the crucial role of microbial community composition in the quality and stability of seafood, little emphasis has been given to the microbiota profile of sea urchin gonads. This study investigates the microbial quality and community composition of sea urchin gonads (Echinus esculentus) as a function of harvesting season (autumn, winter, spring, and summer) and location (one site proximal to urban activity areas while the other is located in open water close to the coastline). Significant season-dependent variations were found in psychrotrophic and aerobic plate counts, with higher counts in summer, followed by autumn, spring, and winter. H2S-producing bacteria and Pseudomonas spp. counts were unaffected by harvesting season or location. Sea urchin gonad microbial composition proved resilient and dynamic, primarily shaped by seasonal variations, and minimally influenced by location. Winter and spring samples exhibited higher diversity than autumn and summer. Key genera like Pseudomonas, Psychromonas, Vibrio, Chryseobacterium, Shewanella, and Photobacterium varied seasonally. Pseudomonas, Vibrio, and Photobacterium are crucial in assessing microbial quality and safety due to their roles as specific spoilage organisms (SSOs) and, in some cases, human pathogens. Though relative abundances differed slightly between locations, harvesting location did not notably impact microbial community shaping in gonads. However, the results suggest that harvesting locations near areas with urban activity may lead to contamination with specific bacterial species, possibly due to water quality variations. These findings emphasize the importance of considering seasonality when evaluating sea urchin gonad microbial quality. Identifying key genera enhances insights into potential SSOs and human pathogens, enhancing food safety considerations in the consumption of raw or lightly processed sea urchin gonads and guiding the development of preservation methods to extend shelf life.
Collapse
Affiliation(s)
- Dionysios Tsoukalas
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.
| | - Imen Hamed
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Sunniva Hoel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| |
Collapse
|
3
|
Hernández-Zulueta J, Rubio-Bueno S, Zamora-Tavares MDP, Vargas-Ponce O, Rodríguez-Troncoso AP, Rodríguez-Zaragoza FA. Metabarcoding the Bacterial Assemblages Associated with Toxopneustes roseus in the Mexican Central Pacific. Microorganisms 2024; 12:1195. [PMID: 38930577 PMCID: PMC11205562 DOI: 10.3390/microorganisms12061195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The Mexican Central Pacific (MCP) region has discontinuous coral ecosystems with different protection and anthropogenic disturbance. Characterizing the bacterial assemblage associated with the sea urchin Toxopneustes roseus and its relationship with environmental variables will contribute to understanding the species' physiology and ecology. We collected sea urchins from coral ecosystems at six sites in the MCP during the summer and winter for two consecutive years. The spatial scale represented the most important variation in the T. roseus bacteriome, particularly because of Isla Isabel National Park (PNII). Likewise, spatial differences correlated with habitat structure variables, mainly the sponge and live coral cover. The PNII exhibited highly diverse bacterial assemblages compared to other sites, characterized by families associated with diseases and environmental stress (Saprospiraceae, Flammeovirgaceae, and Xanthobacteraceae). The remaining five sites presented a constant spatiotemporal pattern, where the predominance of the Campylobacteraceae and Helicobacteraceae families was key to T. roseus' holobiont. However, the dominance of certain bacterial families, such as Enterobacteriaceae, in the second analyzed year suggests that Punto B and Islas e islotes de Bahía Chamela Sanctuary were exposed to sewage contamination. Overall, our results improve the understanding of host-associated bacterial assemblages in specific time and space and their relationship with the environmental condition.
Collapse
Affiliation(s)
- Joicye Hernández-Zulueta
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico;
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía (LEMITAX), Departamento de Ecología Aplicada, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico
| | - Sharix Rubio-Bueno
- Programa de Maestría en Ciencias en Biosistemática y Manejo de Recursos Naturales y Agrícolas, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico;
| | - María del Pilar Zamora-Tavares
- Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg), Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico; (M.d.P.Z.-T.); (O.V.-P.)
| | - Ofelia Vargas-Ponce
- Laboratorio Nacional de Identificación y Caracterización Vegetal (LaniVeg), Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico; (M.d.P.Z.-T.); (O.V.-P.)
| | - Alma Paola Rodríguez-Troncoso
- Laboratorio de Ecología Marina, Centro Universitario de la Costa (CUCosta), Universidad de Guadalajara, Puerto Vallarta 48280, Jalisco, Mexico;
| | - Fabián A. Rodríguez-Zaragoza
- Laboratorio de Ecología Molecular, Microbiología y Taxonomía (LEMITAX), Departamento de Ecología Aplicada, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan 45200, Jalisco, Mexico
| |
Collapse
|
4
|
Crow RS, Shaw CG, Grayfer L, Smith LC. Recombinant SpTransformer proteins are functionally diverse for binding and phagocytosis by three subtypes of sea urchin phagocytes. Front Immunol 2024; 15:1372904. [PMID: 38742116 PMCID: PMC11089230 DOI: 10.3389/fimmu.2024.1372904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction The California purple sea urchin, Strongylocentrotus purpuratus, relies solely on an innate immune system to combat the many pathogens in the marine environment. One aspect of their molecular defenses is the SpTransformer (SpTrf) gene family that is upregulated in response to immune challenge. The gene sequences are highly variable both within and among animals and likely encode thousands of SpTrf isoforms within the sea urchin population. The native SpTrf proteins bind foreign targets and augment phagocytosis of a marine Vibrio. A recombinant (r)SpTrf-E1-Ec protein produced by E. coli also binds Vibrio but does not augment phagocytosis. Methods To address the question of whether other rSpTrf isoforms function as opsonins and augment phagocytosis, six rSpTrf proteins were expressed in insect cells. Results The rSpTrf proteins are larger than expected, are glycosylated, and one dimerized irreversibly. Each rSpTrf protein cross-linked to inert magnetic beads (rSpTrf::beads) results in different levels of surface binding and phagocytosis by phagocytes. Initial analysis shows that significantly more rSpTrf::beads associate with cells compared to control BSA::beads. Binding specificity was verified by pre-incubating the rSpTrf::beads with antibodies, which reduces the association with phagocytes. The different rSpTrf::beads show significant differences for cell surface binding and phagocytosis by phagocytes. Furthermore, there are differences among the three distinct types of phagocytes that show specific vs. constitutive binding and phagocytosis. Conclusion These findings illustrate the complexity and effectiveness of the sea urchin innate immune system driven by the natSpTrf proteins and the phagocyte cell populations that act to neutralize a wide range of foreign pathogens.
Collapse
Affiliation(s)
| | | | | | - L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
5
|
González-Aravena M, Perrois G, Font A, Cárdenas CA, Rondon R. Microbiome profile of the Antarctic clam Laternula elliptica. Braz J Microbiol 2024; 55:487-497. [PMID: 38157148 PMCID: PMC10920576 DOI: 10.1007/s42770-023-01200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
The filter feeder clam Laternula elliptica is a key species in the Antarctic ecosystem. As a stenothermal benthic species, it has a poor capacity for adaptation to small temperature variations. Despite their ecological importance and sensitivity to climate change, studies on their microbiomes are lacking. The goal of this study was to characterize the bacterial communities of L. elliptica and the tissues variability of this microbiome to provide an initial insight of host-microbiota interactions. We investigated the diversity and taxonomic composition of bacterial communities of L. elliptica from five regions of the body using high-throughput 16S rRNA gene sequencing. The results showed that the microbiome of L. elliptica tended to differ from that of the surrounding seawater samples. However, there were no significant differences in the microbial composition between the body sites, and only two OTUs were present in all samples, being considered core microbiome (genus Moritella and Polaribacter). No significant differences were detected in diversity indexes among tissues (mean 626.85 for observed OTUs, 628.89 Chao1, 5.42 Shannon, and 0.87 Simpson). Rarefaction analysis revealed that most tissues reached a plateau of OTU number according to sample increase, with the exception of Siphon samples. Psychromonas and Psychrilyobacter were particularly abundant in L. elliptica whereas Fluviicola dominated seawater and siphons. Typical polar bacteria were Polaribacter, Shewanella, Colwellia, and Moritella. We detected the prevalence of pathogenic bacterial sequences, particularly in the family Arcobacteraceae, Pseudomonadaceae, and Mycoplasmataceae. The prokaryotic diversity was similar among tissues, as well as their taxonomic composition, suggesting a homogeneity of the microbiome along L. elliptica body. The Antarctic clam population can be used to monitor the impact of human activity in areas near Antarctic stations that discharge wastewater.
Collapse
Affiliation(s)
| | - Garance Perrois
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
- Tropical & Subtropical Research Center, Korea Institute of Ocean Science & Technology, Busan, Republic of Korea
| | - Alejandro Font
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
| | - César A Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Rodolfo Rondon
- Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile.
| |
Collapse
|
6
|
Shaw CG, Pavloudi C, Crow RS, Saw JH, Smith LC. Spotting disease disrupts the microbiome of infected purple sea urchins, Strongylocentrotus purpuratus. BMC Microbiol 2024; 24:11. [PMID: 38172649 PMCID: PMC10765733 DOI: 10.1186/s12866-023-03161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Spotting disease infects a variety of sea urchin species across many different marine locations. The disease is characterized by discrete lesions on the body surface composed of discolored necrotic tissue that cause the loss of all surface appendages within the lesioned area. A similar, but separate disease of sea urchins called bald sea urchin disease (BSUD) has overlapping symptoms with spotting disease, resulting in confusions in distinguishing the two diseases. Previous studies have focus on identifying the underlying causative agent of spotting disease, which has resulted in the identification of a wide array of pathogenic bacteria that vary based on location and sea urchin species. Our aim was to investigate the spotting disease infection by characterizing the microbiomes of the animal surface and various tissues. RESULTS We collected samples of the global body surface, the lesion surface, lesioned and non-lesioned body wall, and coelomic fluid, in addition to samples from healthy sea urchins. 16S rRNA gene was amplified and sequenced from the genomic DNA. Results show that the lesions are composed mainly of Cyclobacteriaceae, Cryomorphaceae, and a few other taxa, and that the microbial composition of lesions is the same for all infected sea urchins. Spotting disease also alters the microbial composition of the non-lesioned body wall and coelomic fluid of infected sea urchins. In our closed aquarium systems, sea urchins contracted spotting disease and BSUD separately and therefore direct comparisons could be made between the microbiomes from diseased and healthy sea urchins. CONCLUSION Results show that spotting disease and BSUD are separate diseases with distinct symptoms and distinct microbial compositions.
Collapse
Affiliation(s)
- Chloe G Shaw
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Christina Pavloudi
- Department of Biological Sciences, George Washington University, Washington, DC, USA
- European Marine Biological Resource Centre (EMBRC-ERIC), Paris, France
| | - Ryley S Crow
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Jimmy H Saw
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
7
|
Dong Y, Li Y, Ge M, Takatsu T, Wang Z, Zhang X, Ding D, Xu Q. Distinct gut microbial communities and functional predictions in divergent ophiuroid species: host differentiation, ecological niches, and adaptation to cold-water habitats. Microbiol Spectr 2023; 11:e0207323. [PMID: 37889056 PMCID: PMC10715168 DOI: 10.1128/spectrum.02073-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE Gastrointestinal microorganisms are critical to the survival and adaptation of hosts, and there are few studies on the differences and functions of gastrointestinal microbes in widely distributed species. This study investigated the gut microbes of two ophiuroid species (Ophiura sarsii and its subspecies O. sarsii vadicola) in cold-water habitats of the Northern Pacific Ocean. The results showed that a combination of host and environmental factors shapes the intestinal microbiota of ophiuroids. There was a high similarity in microbial communities between the two groups living in different regions, which may be related to their similar ecological niches. These microorganisms played a vital role in the ecological success of ophiuroids as the foundation for their adaptation to cold-water environments. This study revealed the complex relationship between hosts and their gut microbes, providing insights into the role they play in the adaptation and survival of marine species.
Collapse
Affiliation(s)
- Yue Dong
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yixuan Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Meiling Ge
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Tetsuya Takatsu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Zongling Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Dewen Ding
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| |
Collapse
|
8
|
Park JY, Jo JW, An YJ, Lee JJ, Kim BS. Alterations in sea urchin (Mesocentrotus nudus) microbiota and their potential contributions to host according to barren severity. NPJ Biofilms Microbiomes 2023; 9:83. [PMID: 37907565 PMCID: PMC10618176 DOI: 10.1038/s41522-023-00450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023] Open
Abstract
Sea urchins are biotic factors driving the decline of kelp forests in marine ecosystems. However, few studies have analyzed the microbiota of surviving sea urchins in barren regions with scarce diet resources. Here, we analyzed the microbiota in the pharynx and gut of the sea urchin Mesocentrotus nudus located along the coast of an expanding barren region in South Korea. The ecological adaptation of genera in sea urchins was predicted using the neutral assembly model. The pharynx and gut microbiota were different, and microbes in the surrounding habitats dispersed more to the pharynx than to the gut. The gut microbiota in sea urchins is altered by barren severity and plays different roles in host energy metabolism. These findings help to understand the microbiota in sea urchins according to urchin barren and its contribution to the survival of sea urchins in severe barren regions with limited macroalgae.
Collapse
Affiliation(s)
- Joon-Young Park
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Jae-Won Jo
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Yu-Jeong An
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Jin-Jae Lee
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea.
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Gangwon-do, Republic of Korea.
| |
Collapse
|
9
|
Guo W, Bi SS, Wang WW, Zhou M, Neves ALA, Degen AA, Guan LL, Long RJ. Maternal rumen and milk microbiota shape the establishment of early-life rumen microbiota in grazing yak calves. J Dairy Sci 2023; 106:2054-2070. [PMID: 36710176 DOI: 10.3168/jds.2022-22655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/05/2022] [Indexed: 01/30/2023]
Abstract
Early-life gut microbial colonization and development exert a profound impact on the health and metabolism of the host throughout the life span. The transmission of microbes from the mother to the offspring affects the succession and establishment of the early-life rumen microbiome in newborns, but the contributions of different maternal sites to the rumen microbial establishment remain unclear. In the present study, samples from different dam sites (namely, oral, rumen fluid, milk, and teat skin) and rumen fluid of yak calves were collected at 6 time points between d 7 and 180 postpartum to determine the contributions of the different maternal sites to the establishment of the bacterial and archaeal communities in the rumen during early life. Our analysis demonstrated that the dam's microbial communities clustered according to the sites, and the calves' rumen microbiota resembled that of the dam consistently regardless of fluctuations at d 7 and 14. The dam's rumen microbiota was the major source of the calves' rumen bacteria (7.9%) and archaea (49.7%) compared with the other sites, whereas the potential sources of the calf rumen microbiota from other sites varied according to the age. The contribution of dam's rumen bacteria increased with age from 0.36% at d 7 to 14.8% at d 180, whereas the contribution of the milk microbiota showed the opposite trend, with its contribution reduced from 2.7% at d 7 to 0.2% at d 180. Maternal oral archaea were the main sources of the calves' rumen archaea at d 14 (50.4%), but maternal rumen archaea became the main source gradually and reached 66.2% at d 180. These findings demonstrated the potential microbial transfer from the dam to the offspring that could influence the rumen microbiota colonization and establishment in yak calves raised under grazing regimens, providing the basis for future microbiota manipulation strategies during their early life.
Collapse
Affiliation(s)
- W Guo
- State Key Laboratory of Grassland Agro-ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - S S Bi
- State Key Laboratory of Grassland Agro-ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - W W Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - M Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - A L A Neves
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - A A Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| | - R J Long
- State Key Laboratory of Grassland Agro-ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
10
|
Rodríguez-Barreras R, Dominicci-Maura A, Tosado-Rodríguez EL, Godoy-Vitorino F. The Epibiotic Microbiota of Wild Caribbean Sea Urchin Spines Is Species Specific. Microorganisms 2023; 11:391. [PMID: 36838357 PMCID: PMC9966300 DOI: 10.3390/microorganisms11020391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Caribbean sea urchins are marine invertebrates that have experienced a decline over the years. Studies on sea urchins have focused primarily on the microbiome of the coelomic fluid or the gut microbiota. In this study, the epibiota community associated with four wild Caribbean sea urchin species, Lytechinus variegatus, Echinometra lucunter, Tripneustes ventricosus, and Diadema antillarum, was characterized for the first time. Using 57 sea urchin animal samples, we evaluated the influence of animal species, trophic niches, and geographical location on the composition of the epibiotic microbiota. We found significant differences in the bacterial biota among species and trophic niches, but not among geographical locations. L. variegatus exhibited the highest alpha diversity with high dominance of Fusobacteria, Planctomycetes, and Cyanobacteria, whereas T. ventricosus and D. antillarum were dominated by Firmicutes. T. ventricosus inhabiting the seagrass biotope dominated by Thalassia testudinum meadows had mostly Endozoicomonas. In contrast, samples located in the reef (dominated by corals and other reef builders) had a higher abundance of Kistimonas and Photobacterium. Our findings confirm that the epibiotic microbiota is species-specific, but also niche-dependent, revealing the trophic networks emerging from the organic matter being recycled in the seagrass and reef niches. As echinoids are important grazers of benthic communities, their microbiota will likely influence ecosystem processes.
Collapse
Affiliation(s)
- Ruber Rodríguez-Barreras
- Department of Biology, University of Puerto Rico, Mayagüez Campus, P.O. Box 9000, Mayagüez 00681-9000, Puerto Rico
| | - Anelisse Dominicci-Maura
- Department of Microbiology, University of Puerto Rico School of Medicine, Guillermo Arbona Main Building, San Juan 00936-5067, Puerto Rico
| | - Eduardo L. Tosado-Rodríguez
- Department of Microbiology, University of Puerto Rico School of Medicine, Guillermo Arbona Main Building, San Juan 00936-5067, Puerto Rico
| | - Filipa Godoy-Vitorino
- Department of Microbiology, University of Puerto Rico School of Medicine, Guillermo Arbona Main Building, San Juan 00936-5067, Puerto Rico
| |
Collapse
|
11
|
Aljahdali MO, Molla MHR. Population dynamics and fecundity estimates of Long-spined Black Sea Urchin Diadema savignyi (Audouin, 1890) from the Red Sea, Saudi Arabia. Saudi J Biol Sci 2022; 29:103395. [PMID: 35935102 PMCID: PMC9352549 DOI: 10.1016/j.sjbs.2022.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Sea Urchin is not only the crucial keystone species for the coral reef restoration but also it has antimicrobial and anti-cancer activities. This study undertaken to focus on length weight relationship, size fecundity distribution and the estimation of fecundity from the long-spined Sea Urchin, Diadema savignyi at the coastal water of the middle Red Sea, Saudi Arabia. A total of 633 specimen of D. savignyi has been collected from the coastal water of Obhur Creak during the sampling time. In each species, total length (TL) measured as a TW = 11.908 × 0.9995 (R2 = 0.8975) through the linear regression graph and digital slide callipers and, individual body weight estimated by the digital balance. The natural and fishing mortality 2.02/yr and 0.19/yr respectively has documented from study area. The Asymptotic length value (L∞) (cm) were estimated 7.35 where the growth coefficient (K) was 0.67 from the monthly length-frequency numeric data by using FAO FISAT II software for generating and estimating the population parameters and age. However, the recruitment pattern was observed to be increased gradually with the maximum recruitment peak between the months of September and October 2021. Therefore, the estimation of fecundity varied from 49,226 ova (total length 3.1 cm) to 466,133 ova (total length 6.8). As a result, analysis of the relationship between the absolute fecundity (F) and total length (TL), and between the fecundity and drained body weight (DW), revealed a linear regression model with a positive and significant relationship at p < 0.05. This is the first approach to study the detailed population dynamic of the ecologically and economically important tropical long spine sea urchin (D. savignyi) endemic to the region. However, the result so far obtained from this research would greatly be useful towards the understanding of the detailed population structure and growth patterns that will undoubtedly help us to develop captive breeding, seed production, culture protocols, conservation strategies and isolation bioactive compounds of this high-valued species incommensurate with national and international perspectives.
Collapse
|
12
|
Masasa M, Kushmaro A, Kramarsky-Winter E, Shpigel M, Barkan R, Golberg A, Kribus A, Shashar N, Guttman L. Mono-specific algal diets shape microbial networking in the gut of the sea urchin Tripneustes gratilla elatensis. Anim Microbiome 2021; 3:79. [PMID: 34782025 PMCID: PMC8594234 DOI: 10.1186/s42523-021-00140-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Algivorous sea urchins can obtain energy from a diet of a single algal species, which may result in consequent changes in their gut microbe assemblies and association networks. METHODS To ascertain whether such changes are led by specific microbes or limited to a specific region in the gut, we compared the microbial assembly in the three major gut regions of the sea urchin Tripneustes gratilla elatensis when fed a mono-specific algal diet of either Ulva fasciata or Gracilaria conferta, or an algal-free diet. DNA extracts from 5 to 7 individuals from each diet treatment were used for Illumina MiSeq based 16S rRNA gene sequencing (V3-V4 region). Niche breadth of each microbe in the assembly was calculated for identification of core, generalist, specialist, or unique microbes. Network analyzers were used to measure the connectivity of the entire assembly and of each of the microbes within it and whether it altered with a given diet or gut region. Lastly, the predicted metabolic functions of key microbes in the gut were analyzed to evaluate their potential contribution to decomposition of dietary algal polysaccharides. RESULTS Sea urchins fed with U. fasciata grew faster and their gut microbiome network was rich in bacterial associations (edges) and networking clusters. Bacteroidetes was the keystone microbe phylum in the gut, with core, generalist, and specialist representatives. A few microbes of this phylum were central hub nodes that maintained community connectivity, while others were driver microbes that led the rewiring of the assembly network based on diet type through changes in their associations and centrality. Niche breadth agreed with microbes' richness in genes for carbohydrate active enzymes and correlated Bacteroidetes specialists to decomposition of specific polysaccharides in the algal diets. CONCLUSIONS The dense and well-connected microbial network in the gut of Ulva-fed sea urchins, together with animal's rapid growth, may suggest that this alga was most nutritious among the experimental diets. Our findings expand the knowledge on the gut microbial assembly in T. gratilla elatensis and strengthen the correlation between microbes' generalism or specialism in terms of occurrence in different niches and their metabolic arsenal which may aid host nutrition.
Collapse
Affiliation(s)
- Matan Masasa
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev, Eilat Campus, Eilat, Israel.,Israel Oceanographic and Limnological Research, The National Center for Mariculture, P.O. Box 1212, 8811201, Eilat, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O.B. 653, 8410501, Beer-Sheva, Israel
| | - Esti Kramarsky-Winter
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O.B. 653, 8410501, Beer-Sheva, Israel
| | - Muki Shpigel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, 3498838, Haifa, Israel
| | - Roy Barkan
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev, Eilat Campus, Eilat, Israel.,Israel Oceanographic and Limnological Research, The National Center for Mariculture, P.O. Box 1212, 8811201, Eilat, Israel
| | - Alex Golberg
- Department of Environmental Studies, Tel Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel
| | - Abraham Kribus
- School of Mechanical Engineering, Tel Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel
| | - Nadav Shashar
- Marine Biology and Biotechnology Program, Department of Life Sciences, Ben-Gurion University of the Negev, Eilat Campus, Eilat, Israel
| | - Lior Guttman
- Israel Oceanographic and Limnological Research, The National Center for Mariculture, P.O. Box 1212, 8811201, Eilat, Israel.
| |
Collapse
|
13
|
Microbial Composition and Genes for Key Metabolic Attributes in the Gut Digesta of Sea Urchins Lytechinus variegatus and Strongylocentrotus purpuratus Using Shotgun Metagenomics. Curr Issues Mol Biol 2021; 43:978-995. [PMID: 34563039 PMCID: PMC8929034 DOI: 10.3390/cimb43020070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
This paper describes the microbial community composition and genes for key metabolic genes, particularly the nitrogen fixation of the mucous-enveloped gut digesta of green (Lytechinus variegatus) and purple (Strongylocentrotus purpuratus) sea urchins by using the shotgun metagenomics approach. Both green and purple urchins showed high relative abundances of Gammaproteobacteria at 30% and 60%, respectively. However, Alphaproteobacteria in the green urchins had higher relative abundances (20%) than the purple urchins (2%). At the genus level, Vibrio was dominant in both green (~9%) and purple (~10%) urchins, whereas Psychromonas was prevalent only in purple urchins (~24%). An enrichment of Roseobacter and Ruegeria was found in the green urchins, whereas purple urchins revealed a higher abundance of Shewanella, Photobacterium, and Bacteroides (q-value < 0.01). Analysis of key metabolic genes at the KEGG-Level-2 categories revealed genes for amino acids (~20%), nucleotides (~5%), cofactors and vitamins (~6%), energy (~5%), carbohydrates (~13%) metabolisms, and an abundance of genes for assimilatory nitrogen reduction pathway in both urchins. Overall, the results from this study revealed the differences in the microbial community and genes designated for the metabolic processes in the nutrient-rich sea urchin gut digesta, suggesting their likely importance to the host and their environment.
Collapse
|
14
|
The Gut Microbiota of Naturally Occurring and Laboratory Aquaculture Lytechinus variegatus Revealed Differences in the Community Composition, Taxonomic Co-Occurrence, and Predicted Functional Attributes. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sea urchins, in many instances, are collected from the wild, maintained in the laboratory aquaculture environment, and used as model animals for various scientific investigations. It has been increasingly evident that diet-driven dysbiosis of the gut microbiome could affect animal health and physiology, thereby impacting the outcome of the scientific studies. In this study, we compared the gut microbiome between naturally occurring (ENV) and formulated diet-fed laboratory aquaculture (LAB) sea urchin Lytechinus variegatus by amplicon sequencing of the V4 region of the 16S rRNA gene and bioinformatics tools. Overall, the ENV gut digesta had higher taxa richness with an abundance of Propionigenium, Photobacterium, Roseimarinus, and Flavobacteriales. In contrast, the LAB group revealed fewer taxa richness, but noticeable abundances of Arcobacter, Agarivorans, and Shewanella. However, Campylobacteraceae, primarily represented by Arcobacter spp., was commonly associated with the gut tissues of both ENV and LAB groups whereas the gut digesta had taxa from Gammaproteobacteria, particularly Vibrio spp. Similarly, the co-occurrence network displayed taxonomic organizations interconnected by Arcobacter and Vibrio as being the key taxa in gut tissues and gut digesta, respectively. Predicted functional analysis of the gut tissues microbiota of both ENV and LAB groups showed a higher trend in energy-related metabolisms, whereas amino acids, carbohydrate, and lipid metabolisms heightened in the gut digesta. This study provides an outlook of the laboratory-formulated diet-fed aquaculture L. variegatus gut microbiome and predicted metabolic profile as compared to the naturally occurring animals, which should be taken into consideration for consistency, reproducibility, and translatability of scientific studies.
Collapse
|
15
|
The bacterial composition associated with Atriolum robustum, a common ascidian from Xisha coral reef, China. Symbiosis 2021. [DOI: 10.1007/s13199-020-00742-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Guo W, Zhou M, Ma T, Bi S, Wang W, Zhang Y, Huang X, Guan LL, Long R. Survey of rumen microbiota of domestic grazing yak during different growth stages revealed novel maturation patterns of four key microbial groups and their dynamic interactions. Anim Microbiome 2020; 2:23. [PMID: 33499950 PMCID: PMC7807461 DOI: 10.1186/s42523-020-00042-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The development and maturation of rumen microbiota across the lifetime of grazing yaks remain unexplored due to the varied lifestyles and feed types of yaks as well as the challenges of obtaining samples. In addition, the interactions among four different rumen microbial groups (bacteria, archaea, fungi and protozoa) in the rumen of yak are not well defined. In this study, the rumen microbiota of full-grazing yaks aged 7 days to 12 years old was assessed to determine the maturation patterns of these four microbial groups and the dynamic interactions among them during different growth stages. RESULTS The rumen microbial groups (bacteria, archaea, protozoa and fungi) varied through the growth of yaks from neonatal (7 days) to adult (12 years), and the bacterial and archaeal groups were more sensitive to changes in growth stages compared to the two eukaryotic microbial groups. The age-discriminatory taxa within each microbial group were identified with the random forest model. Among them, Olsenella (bacteria), Group 10 sp., belonging to the family Methanomassiliicoccaceae (archaea), Orpinomyces (fungi), and Dasytricha (protozoa) contributed the most to discriminating the age of the rumen microbiota. Moreover, we found that the rumen archaea reached full maturation at 5 approximately years of age, and the other microbial groups matured between 5 and 8 years of age. The intra-interactions patterns and keystone species within each microbial group were identified by network analysis, and the inter-interactions among the four microbial groups changed with growth stage. Regarding the inter-interactions among the four microbial groups, taxa from bacteria and protozoa, including Christensenellaceae R-7 group, Prevotella 1, Trichostomatia, Ruminococcaceae UCG-014 and Lachnospiraceae, were the keystone species in the network based on betweenness centrality scores. CONCLUSIONS This study depicted a comprehensive view of rumen microbiota changes in different growth stages of grazing yaks. The results revealed the unique microbiota maturation trajectory and the intra- and inter-interactions among bacteria, archaea, fungi and protozoa in the rumen of grazing yaks across the lifetime of yaks. The information obtained in this study is vital for the future development of strategies to manipulate rumen microbiota in grazing yaks for better growth and performance in the harsh Qinghai-Tibetan Plateau ecosystem.
Collapse
Affiliation(s)
- Wei Guo
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730020 China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Mi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Tao Ma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
- Key laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Sisi Bi
- School of Life Sciences, Lanzhou University, Lanzhou, 730020 China
| | - Weiwei Wang
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730020 China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou, 730020 China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, 730020 China
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Ruijun Long
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730020 China
- School of Life Sciences, Lanzhou University, Lanzhou, 730020 China
- International Centre for Tibetan Plateau Ecosystem Management, Lanzhou University, Lanzhou, 730020 China
| |
Collapse
|
17
|
Li Q, Chen S, Liu K, Long D, Liu D, Jing Z, Huang X. Differences in Gut Microbial Diversity are Driven by Drug Use and Drug Cessation by Either Compulsory Detention or Methadone Maintenance Treatment. Microorganisms 2020; 8:microorganisms8030411. [PMID: 32183228 PMCID: PMC7143234 DOI: 10.3390/microorganisms8030411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/01/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
In this work, we investigate differences in gut microbial diversity driven by drug use or by the widely used methods for drug cessation: methadone maintenance treatment (MMT) and compulsory detention (CD). Methods: 99 participants (28 CD participants, 16 MMT patients, 27 drug users, and 28 healthy controls) were selected using strict inclusion criteria. Nutritional intake and gut microbial diversity were analyzed with bioinformatics tools and SPSS 20.0. Results: Alpha diversity was not significantly different among groups, whereas beta diversity of gut microbiota and nutrient intake were significantly higher among MMT patients. Taxa were unevenly distributed between groups, with drug users having the highest proportion of Ruminococcus and MMT patients having the highest abundance of Bifidobacterium and Lactobacillus. Conclusion: Drug use, cessation method, and diet contribute to shaping human gut communities. High beta diversity among MMT patients is likely driven by methadone use and high nutrient intake, leading to increased orexin A and enrichment for beneficial bacteria, while diversity in CD participants is largely influenced by diet.
Collapse
Affiliation(s)
- Qiaoyan Li
- School of Public Health, Lanzhou University, No. 222 TianshuiNanlu, Lanzhou 730000, China; (Q.L.); (S.C.); (K.L.); (D.L.); (D.L.)
| | - Siqi Chen
- School of Public Health, Lanzhou University, No. 222 TianshuiNanlu, Lanzhou 730000, China; (Q.L.); (S.C.); (K.L.); (D.L.); (D.L.)
| | - Ke Liu
- School of Public Health, Lanzhou University, No. 222 TianshuiNanlu, Lanzhou 730000, China; (Q.L.); (S.C.); (K.L.); (D.L.); (D.L.)
| | - Danfeng Long
- School of Public Health, Lanzhou University, No. 222 TianshuiNanlu, Lanzhou 730000, China; (Q.L.); (S.C.); (K.L.); (D.L.); (D.L.)
| | - Diru Liu
- School of Public Health, Lanzhou University, No. 222 TianshuiNanlu, Lanzhou 730000, China; (Q.L.); (S.C.); (K.L.); (D.L.); (D.L.)
| | - Zhengchao Jing
- Mengzi Center for Disease Prevention and Control, Mengzi 661199, China
- Correspondence: (Z.J.); (X.H.)
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, No. 222 TianshuiNanlu, Lanzhou 730000, China; (Q.L.); (S.C.); (K.L.); (D.L.); (D.L.)
- Correspondence: (Z.J.); (X.H.)
| |
Collapse
|
18
|
Schwob G, Cabrol L, Poulin E, Orlando J. Characterization of the Gut Microbiota of the Antarctic Heart Urchin (Spatangoida) Abatus agassizii. Front Microbiol 2020; 11:308. [PMID: 32184772 PMCID: PMC7058685 DOI: 10.3389/fmicb.2020.00308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/11/2020] [Indexed: 12/25/2022] Open
Abstract
Abatus agassizii is an irregular sea urchin species that inhabits shallow waters of South Georgia and South Shetlands Islands. As a deposit-feeder, A. agassizii nutrition relies on the ingestion of the surrounding sediment in which it lives barely burrowed. Despite the low complexity of its feeding habit, it harbors a long and twice-looped digestive tract suggesting that it may host a complex bacterial community. Here, we characterized the gut microbiota of specimens from two A. agassizii populations at the south of the King George Island in the West Antarctic Peninsula. Using a metabarcoding approach targeting the 16S rRNA gene, we characterized the Abatus microbiota composition and putative functional capacity, evaluating its differentiation among the gut content and the gut tissue in comparison with the external sediment. Additionally, we aimed to define a core gut microbiota between A. agassizii populations to identify potential keystone bacterial taxa. Our results show that the diversity and the composition of the microbiota, at both genetic and predicted functional levels, were mostly driven by the sample type, and to a lesser extent by the population location. Specific bacterial taxa, belonging mostly to Planctomycetacia and Spirochaetia, were differently enriched in the gut content and the gut tissue, respectively. Predictive functional profiles revealed higher abundance of specific pathways, as the sulfur cycle in the gut content and the amino acid metabolism, in the gut tissue. Further, the definition of a core microbiota allowed to obtain evidence of specific localization of bacterial taxa and the identification of potential keystone taxa assigned to the Desulfobacula and Spirochaeta genera as potentially host selected. The ecological relevance of these keystone taxa in the host metabolism is discussed.
Collapse
Affiliation(s)
- Guillaume Schwob
- Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Léa Cabrol
- Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
| | - Elie Poulin
- Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Julieta Orlando
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
19
|
Lawrence JM, Lawrence AL, Watts SA. Ingestion, digestion, and digestibility of regular sea urchins. DEVELOPMENTS IN AQUACULTURE AND FISHERIES SCIENCE 2020. [DOI: 10.1016/b978-0-12-819570-3.00009-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Danesh F, Ghavidel S. Visualizing the Clusters and Dynamics of HPV Research Area. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2019. [DOI: 10.30699/ijmm.13.4.266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Microbial Diversity of the Red Sea Urchin Loxechinus albus during Controlled Farming in Puerto Montt, Chile, Using 16S rRNA Gene Amplicon Sequencing. Microbiol Resour Announc 2019; 8:8/42/e00851-19. [PMID: 31624162 PMCID: PMC6797527 DOI: 10.1128/mra.00851-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Loxechinus albus is a shallow-water sea urchin, and its distribution is related to the cold water of the Southern Hemisphere. Recently, bacterial communities, also called microbiota, in sea urchins have started being explored. In this report, we have characterized the surface, testa, and gonad microbiota using 16S rRNA sequencing. Loxechinus albus is a shallow-water sea urchin, and its distribution is related to the cold water of the Southern Hemisphere. Recently, bacterial communities, also called microbiota, in sea urchins have started being explored. In this report, we have characterized the surface, testa, and gonad microbiota using 16S rRNA sequencing.
Collapse
|