1
|
Kumari S, Kumar A, Lepcha A, Kumar R. Cold-adapted Exiguobacterium sibiricum K1 as a potential bioinoculant in cold regions: Physiological and genomic elucidation of biocontrol and plant growth promotion. Gene 2024; 916:148439. [PMID: 38583819 DOI: 10.1016/j.gene.2024.148439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The scarcity of soil nutrient availability under cold conditions of Himalayan regions needs a sustainable approach for better crop yields. The cold-adapted bacteria, Exiguobacterium sibiricum K1, with the potential to produce several plant growth-promoting (PGP) attributes, nitrogen fixation, indole acetic acid production, phosphate and potassium solubilization at 10 °C can provide an opportunity to promote crop yield improvement in an eco-friendly way under cold conditions. The bacterium also exhibited biocontrol activity against two phytopathogens and produced siderophore (53.0 ± 0.5 % psu). The strain's PGP properties were investigated using a spinach-based bioassay under controlled conditions. The bacterized seeds showed a notable increase in germination rate (23.2 %), shoot length (65.3 %), root length (56.6 %), leaf area (73.7 %), number of leaflets (65.2 %), and dry matter (65.2 %). Additionally, the leaf analysis indicated elevated chlorophyll pigments, i.e., chlorophyll a (55.5 %), chlorophyll b (42.8 %), carotenoids (35.2 %), percentage radical scavenging activity (47.4 %), and leaf nutrient uptake such as nitrogen (23.4 %), calcium (60.8 %), potassium (62.3 %), and magnesium (28.9 %). Moreover, the whole-genome sequencing and genome mining endorsed various biofertilisation-related genes, including genes for potassium and phosphate solubilization, iron and nitrogen acquisition, carbon dioxide fixation, and biocontrol ability of Exiguobacterium sibiricum K1. Overall, this study highlights the role of Exiguobacterium sibiricum K1 as a potential bioinoculant for improving crop yield under cold environments.
Collapse
Affiliation(s)
- Sareeka Kumari
- High Altitude Microbiology Laboratory (HAM-LAB), Biotechnology Division, CSIR -Institute of Himalayan and Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anil Kumar
- High Altitude Microbiology Laboratory (HAM-LAB), Biotechnology Division, CSIR -Institute of Himalayan and Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Ayush Lepcha
- High Altitude Microbiology Laboratory (HAM-LAB), Biotechnology Division, CSIR -Institute of Himalayan and Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Rakshak Kumar
- High Altitude Microbiology Laboratory (HAM-LAB), Biotechnology Division, CSIR -Institute of Himalayan and Bioresource Technology, Palampur, H.P. 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India; Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
2
|
Wang Q, Zhou X, Liu Y, Han Y, Zuo J, Deng J, Yuan L, Gao L, Bai W. Mixed oligosaccharides-induced changes in bacterial assembly during cucumber ( Cucumis sativus L.) growth. Front Microbiol 2023; 14:1195096. [PMID: 37492253 PMCID: PMC10364802 DOI: 10.3389/fmicb.2023.1195096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
The application of oligosaccharides can promote plant growth by increasing photosynthesis or inducing plant innate immunity. However, the mechanisms by which oligosaccharides affect bacterial community diversity and abundance remain unclear. In this study, a mixed oligosaccharide was applied to the growth of cucumbers. The findings of the present study suggest that the application of MixOS has significant effects on the bacterial communities in the phyllosphere, rhizosphere, and bulk soil of cucumber plants. The treatment with MixOS resulted in delayed senescence of leaves, well-developed roots, and higher fruit production. The bacterial diversity and composition varied among the different ecological niches, and MixOS application caused significant shifts in the bacterial microbiome composition, particularly in the phyllosphere. Moreover, mixed oligosaccharides increased the abundance of potential growth-promoting bacteria such as Methylorubrum spp. and Lechevalieria spp., and more zOTUs were shared between the WM and MixOS treatments. Furthermore, the bacterial co-occurrence network analysis suggested that the modularity of the phyllosphere networks was the highest among all samples. The bacterial co-occurrence networks were altered because of the application of MixOS, indicating a greater complexity of the bacterial interactions in the rhizosphere and bulk soil. These findings suggest that mixed oligosaccharides has the potential to improve plant growth and yield by modulating the bacterial communities within and outside the plants and could provide a theoretical basis for future agricultural production.
Collapse
Affiliation(s)
- Qiushui Wang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, China
| | - Xin Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yue Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, China
| | - Yan Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia Zuo
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, China
| | - Jie Deng
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, China
| | - Liyan Yuan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, China
| | - Lijuan Gao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, China
| | - Wenbo Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Effects of Mustard Invasions on Soil Microbial Abundances and Fungal Assemblages in Southern California. DIVERSITY 2023. [DOI: 10.3390/d15010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although mustards (family, Brassicaceae) are common across southern California, research has not focused on the effects of type-conversion of native California sage scrub (CSS) to areas dominated by invasive mustards. To better understand how mustard invasions, primarily the short-pod mustard, Hirschfeldia incana, impact soil microbial assemblages, we examined microbial abundance and assemblages from intact CSS and adjacent mustard-dominated soils at three sites. We also explored if germination rates for various plant species differed between CSS and mustard soils. We found that mustard invasions reduce soil microbial abundances by more than 50% and alter soil fungal assemblages. Fungal richness, diversity, and evenness did not differ between habitats, highlighting that these habitats harbor unique microbial assemblages. While mustard allelopathy is predicted to be the primary driver of these changes, mustard invasions also increased soil pH. Although functional consequences of these shifts are unknown, low mustard germination in CSS soils supports biological resistance to mustard invasion in CSS. Overall, our results demonstrate that mustard invasions, H. incana in particular, exert a strong selecting force on soil microbial assemblages, which can influence effective CSS restoration and preservation of ecosystem services.
Collapse
|
4
|
Zhang K, Wang L, Si H, Guo H, Liu J, Jia J, Su Q, Wang Y, Zang J, Xing J, Dong J. Maize stalk rot caused by Fusarium graminearum alters soil microbial composition and is directly inhibited by Bacillus siamensis isolated from rhizosphere soil. Front Microbiol 2022; 13:986401. [PMID: 36338067 PMCID: PMC9630747 DOI: 10.3389/fmicb.2022.986401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
Maize stalk rot caused by Fusarium graminearum can reduce the yield of maize and efficiency of mechanized harvesting. Besides, deoxynivalenol and zearalenone toxins produced by F. graminearum can also affect domestic animals and human health. As chemical fungicides are expensive and exert negative effects on the environment, the use of biological control agents has become attractive in recent years. In the present study, we collected rhizosphere soil with severe stalk rot disease (ZDD), the rhizosphere soil with disease-free near by the ZDD (ZDH), and measured rhizosphere microbial diversity and microbial taxonomic composition by amplicon sequencing targeting either bacteria or fungi. The results showed that Fusarium stalk rot caused by the Fusarium species among which F. graminearum is frequent and can reduce the abundance and alpha diversity of rhizosphere microbial community, and shift the beta diversity of microorganisms. Furthermore, a bacterial strain, Bacillus siamensis GL-02, isolated from ZDD, was found to significantly affect growth of F. graminearum. In vitro and in vivo assays demonstrated that B. siamensis GL-02 had good capability to inhibit F. graminearum. These results revealed that B. siamensis GL-02 could be a potential biocontrol agent for the control of maize stalk rot.
Collapse
Affiliation(s)
- Kang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Liming Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Helong Si
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Hao Guo
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Jianhu Liu
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Jiao Jia
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Qianfu Su
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, China
| | - Yanbo Wang
- Maize Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jinping Zang
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Jihong Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
- *Correspondence: Jihong Xing,
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
- Jingao Dong,
| |
Collapse
|
5
|
Gómez-Lama Cabanás C, Wentzien NM, Zorrilla-Fontanesi Y, Valverde-Corredor A, Fernández-González AJ, Fernández-López M, Mercado-Blanco J. Impacts of the Biocontrol Strain Pseudomonas simiae PICF7 on the Banana Holobiont: Alteration of Root Microbial Co-occurrence Networks and Effect on Host Defense Responses. Front Microbiol 2022; 13:809126. [PMID: 35242117 PMCID: PMC8885582 DOI: 10.3389/fmicb.2022.809126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022] Open
Abstract
The impact of the versatile biocontrol and plant-growth-promoting rhizobacteria Pseudomonas simiae PICF7 on the banana holobiont under controlled conditions was investigated. We examine the fate of this biological control agent (BCA) upon introduction in the soil, the effect on the banana root microbiota, and the influence on specific host genetic defense responses. While the presence of strain PICF7 significantly altered neither the composition nor the structure of the root microbiota, a significant shift in microbial community interactions through co-occurrence network analysis was observed. Despite the fact that PICF7 did not constitute a keystone, the topology of this network was significantly modified-the BCA being identified as a constituent of one of the main network modules in bacterized plants. Gene expression analysis showed the early suppression of several systemic acquired resistance and induced systemic resistance (ISR) markers. This outcome occurred at the time in which the highest relative abundance of PICF7 was detected. The absence of major and permanent changes on the banana holobiont upon PICF7 introduction poses advantages regarding the use of this beneficial rhizobacteria under field conditions. Indeed a BCA able to control the target pathogen while altering as little as possible the natural host-associated microbiome should be a requisite when developing effective bio-inoculants.
Collapse
Affiliation(s)
- Carmen Gómez-Lama Cabanás
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - Nuria M. Wentzien
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | - Antonio Valverde-Corredor
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - Antonio J. Fernández-González
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Manuel Fernández-López
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| |
Collapse
|
6
|
Singh RK, Sreenivasulu N, Prasad M. Potential of underutilized crops to introduce the nutritional diversity and achieve zero hunger. Funct Integr Genomics 2022; 22:1459-1465. [PMID: 36074305 PMCID: PMC9454381 DOI: 10.1007/s10142-022-00898-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/26/2022] [Accepted: 09/04/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Roshan Kumar Singh
- grid.419632.b0000 0001 2217 5846National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Nese Sreenivasulu
- grid.419387.00000 0001 0729 330XInternational Rice Research Institute, 4031 Los Baños, Laguna, Philippines
| | - Manoj Prasad
- grid.419632.b0000 0001 2217 5846National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India ,grid.18048.350000 0000 9951 5557Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046 Telangana India
| |
Collapse
|
7
|
Liu H, Wu J, Su Y, Li Y, Zuo D, Liu H, Liu Y, Mei X, Huang H, Yang M, Zhu S. Allyl Isothiocyanate in the Volatiles of Brassica juncea Inhibits the Growth of Root Rot Pathogens of Panax notoginseng by Inducing the Accumulation of ROS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13713-13723. [PMID: 34780155 DOI: 10.1021/acs.jafc.1c05225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cultivation of Panax notoginseng is often seriously hindered by root rot disease caused by the accumulation of soil-borne pathogens. Here, the inhibitory activity of Brassica juncea volatiles on P. notoginseng root rot pathogens was assessed and compounds in volatiles were identified. Furthermore, the antimicrobial activity and mechanism of allyl isothiocyanate (AITC) were deciphered by integrated transcriptome and metabolome analyses. The volatiles of B. juncea showed dose-dependent antimicrobial activity against root rot pathogens. AITC, identified as the main volatile compound, not only significantly inhibited pathogen growth in vitro but also suppressed root rot disease in the field. Integrated transcriptomic and metabolomics analysis revealed that AITC inhibited Fusarium solani by interfering with energy production and induced the accumulation of ROS by decreasing the content of glutathione (GSH). In summary, B. juncea releases AITC to inhibit soil-borne pathogens and could be used as a rotation crop or soil fumigant to alleviate root rot disease.
Collapse
Affiliation(s)
- Haijiao Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jiaqing Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yingwei Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yingbin Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Denghong Zuo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Hongbin Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yixiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Xinyue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shusheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
8
|
Biological Control of Plant Diseases: An Evolutionary and Eco-Economic Consideration. Pathogens 2021; 10:pathogens10101311. [PMID: 34684260 PMCID: PMC8541133 DOI: 10.3390/pathogens10101311] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Biological control is considered as a promising alternative to pesticide and plant resistance to manage plant diseases, but a better understanding of the interaction of its natural and societal functions is necessary for its endorsement. The introduction of biological control agents (BCAs) alters the interaction among plants, pathogens, and environments, leading to biological and physical cascades that influence pathogen fitness, plant health, and ecological function. These interrelationships generate a landscape of tradeoffs among natural and social functions of biological control, and a comprehensive evaluation of its benefits and costs across social and farmer perspectives is required to ensure the sustainable development and deployment of the approach. Consequently, there should be a shift of disease control philosophy from a single concept that only concerns crop productivity to a multifaceted concept concerning crop productivity, ecological function, social acceptability, and economical accessibility. To achieve these goals, attempts should make to develop “green” BCAs used dynamically and synthetically with other disease control approaches in an integrated disease management scheme, and evolutionary biologists should play an increasing role in formulating the strategies. Governments and the public should also play a role in the development and implementation of biological control strategies supporting positive externality.
Collapse
|
9
|
Tang L, Hamid Y, Chen Z, Lin Q, Shohag MJI, He Z, Yang X. A phytoremediation coupled with agro-production mode suppresses Fusarium wilt disease and alleviates cadmium phytotoxicity of cucumber (Cucumis sativus L.) in continuous cropping greenhouse soil. CHEMOSPHERE 2021; 270:128634. [PMID: 33082004 DOI: 10.1016/j.chemosphere.2020.128634] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) contamination and continuous cropping obstacle often coexist in greenhouse soil and seriously restrict cucumber production. In this study, hyperaccumulator Sedum alfredii Hance was intercropped with spring cucumber (Cucumis sativus L.), then rotated with low accumulator water spinach and autumn cucumber under rational water regime, composited amendment was applied to soil before transplanting autumn cucumber. The results showed that, compared with conventional crop rotation system (Chinese cabbage and cucumber rotation), superposition management practice suppressed Fusarium wilt disease by 28.4 and 57.4% and increased yield by 35.2 and 383% for spring and autumn cucumbers, respectively. Meanwhile, photosynthetic characteristics, antioxidant system and fruit quality were significantly improved. Furthermore, this mode modified soil microbial community structure, enhanced soil enzyme activities, and simultaneously reduced soil total and phytoavailable Cd by 30.3 and 47.7%, respectively. These results demonstrated a feasible technical system to achieve phytoremediation coupled with argo-production in Cd contaminated greenhouse soil with continuous cropping obstacle and provided useful information for further revelation of interaction mechanisms between multicropping and comprehensive biofortification measurements.
Collapse
Affiliation(s)
- Lin Tang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yasir Hamid
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhiqin Chen
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Qiang Lin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Md Jahidul Islam Shohag
- Department of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, Florida, 34945, United States
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|