1
|
Han EJ, Ahn JS, Choi YJ, Kim DH, Choi JS, Chung HJ. Exploring the gut microbiome: A potential biomarker for cancer diagnosis, prognosis, and therapy. Biochim Biophys Acta Rev Cancer 2024:189251. [PMID: 39719176 DOI: 10.1016/j.bbcan.2024.189251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
The gut microbiome, a complex community of trillions of microorganisms in the intestines, is crucial in maintaining human health. Recent advancements in microbiome research have unveiled a compelling link between the gut microbiome and cancer development and progression. Alterations in the composition and function of the gut microbiome, known as dysbiosis, have been implicated in various types of cancer, including, esophageal, liver, colon, pancreatic, and gastrointestinal. However, the specific gut microbial strains associated with the development or progression of cancers in various tissues remain largely unclear. Here, we summarize current research findings on the gut microbiome of multiple cancers. This review aims to identify key gut microbial targets that closely influence cancer development based on current research findings. To accurately evaluate the effectiveness of the gut microbiome as a clinical tool for cancer, further research is needed to explore its potential as a biomarker and therapeutic strategy.
Collapse
Affiliation(s)
- Eui-Jeong Han
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Ji-Seon Ahn
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Yu-Jin Choi
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Da-Hye Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea
| | - Jong-Soon Choi
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea; College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea.
| |
Collapse
|
2
|
Shi X, Jiang A, Qiu Z, Lin A, Liu Z, Zhu L, Mou W, Cheng Q, Zhang J, Miao K, Luo P. Novel perspectives on the link between obesity and cancer risk: from mechanisms to clinical implications. Front Med 2024; 18:945-968. [PMID: 39542988 DOI: 10.1007/s11684-024-1094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/07/2024] [Indexed: 11/17/2024]
Abstract
Existing epidemiologic and clinical studies have demonstrated that obesity is associated with the risk of a variety of cancers. In recent years, an increasing number of experimental and clinical studies have unraveled the complex relationship between obesity and cancer risk and the underlying mechanisms. Obesity-induced abnormalities in immunity and biochemical metabolism, including chronic inflammation, hormonal disorders, dysregulation of adipokines, and microbial dysbiosis, may be important contributors to cancer development and progression. These contributors play different roles in cancer development and progression at different sites. Lifestyle changes, weight loss medications, and bariatric surgery are key approaches for weight-centered, obesity-related cancer prevention. Treatment of obesity-related inflammation and hormonal or metabolic dysregulation with medications has also shown promise in preventing obesity-related cancers. In this review, we summarize the mechanisms through which obesity affects the risk of cancer at different sites and explore intervention strategies for the prevention of obesity-associated cancers, concluding with unresolved questions and future directions regarding the link between obesity and cancer. The aim is to provide valuable theoretical foundations and insights for the in-depth exploration of the complex relationship between obesity and cancer risk and its clinical applications.
Collapse
Affiliation(s)
- Xiaoye Shi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Zhengang Qiu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zaoqu Liu
- Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100730, China
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Kai Miao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
3
|
Padilha MDM, Melo FTDV, Laurentino RV, da Silva ANMR, Feitosa RNM. Dysregulation in the microbiota by HBV and HCV infection induces an altered cytokine profile in the pathobiome of infection. Braz J Infect Dis 2024; 29:104468. [PMID: 39608222 PMCID: PMC11636304 DOI: 10.1016/j.bjid.2024.104468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/07/2024] [Accepted: 11/03/2024] [Indexed: 11/30/2024] Open
Abstract
Viral hepatitis is a public health problem, about 1 million people die due to complications of this viral disease, the etiological agents responsible for inducing cirrhosis and cellular hepatocarcinoma are HBV and HCV, both hepatotropic viruses that cause asymptomatic infection in most cases. The regulation of the microbiota performs many physiological functions, which can induce normal intestinal function and produce essential nutrients for the human body. Metabolites derived from gut microbiota or direct regulation of host immunity and metabolism have been reported to profoundly affect tumorigenesis in liver disease. If the microbiota is unbalanced, both exogenous and symbiotic microorganisms can affect a pathological process. It is well understood that the microbiota plays a role in viral diseases and infections, specifically the hepatic portal pathway has been linked to the gut-liver axis. In HBV and HCV infections, the altered bacterial representatives undergo a state of dysbiosis, with subsequent establishment of the pathobiome with overexpression of taxons such as Bacteroides, Clostridium, Lactobacillus, Enterobacter, and Enterococcus. This dysregulated microbiome induces a microenvironment conducive to the development of hepatic complications in patients with acute and chronic HBV and HCV infection, with subsequent dysregulation of cytokines IFN-α/β, TNF-α, IL-1β, TGF-β, IL-6 and IL-10, which alter the dysfunction and damage of the hepatic portal system. In view of the above, this review aimed to correlate the pathophysiological mechanisms in HBV and HCV infection, the dysregulation of the microbiome in patients infected with HBV and HCV, the most altered cytokines in the microbiome, and the most altered bacterial representatives in the pathobiome of infection.
Collapse
Affiliation(s)
- Marcos Daniel Mendes Padilha
- Universidade Federal do Pará (UFPA), Instituto de Ciências Biológicas, Laboratório de Virologia, Belém, PA, Brazil.
| | | | - Rogério Valois Laurentino
- Universidade Federal do Pará (UFPA), Instituto de Ciências da Saúde, Health Sciences, Belém, PA, Brazil
| | | | | |
Collapse
|
4
|
Jeyaraman N, Jeyaraman M, Mariappan T, Muthu S, Ramasubramanian S, Sharma S, Santos GS, da Fonseca LF, Lana JF. Insights of gut-liver axis in hepatic diseases: Mechanisms, clinical implications, and therapeutic potentials. World J Gastrointest Pharmacol Ther 2024; 15:98146. [PMID: 39534519 PMCID: PMC11551618 DOI: 10.4292/wjgpt.v15.i6.98146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
With the rising prevalence of chronic liver diseases worldwide, there exists a need to diversify our artillery to incorporate a plethora of diagnostic and therapeutic methods to combat this disease. Currently, the most common causes of liver disease are non-alcoholic fatty liver disease, hepatitis, and alcoholic liver disease. Some of these chronic diseases have the potential to transform into hepatocellular carcinoma with advancing fibrosis. In this review, we analyse the relationship between the gut and liver and their significance in liver disease. This two-way relationship has interesting effects on each other in liver diseases. The gut microbiota, through its metabolites, influences the metabolism in numerous ways. Careful manipulation of its composition can lead to the discovery of numerous therapeutic potentials that can be applied in the treatment of various liver diseases. Numerous cohort studies with a pan-omics approach are required to understand the association between the gut microbiome and hepatic disease progression through which we can identify effective ways to deal with this issue.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Tejaswin Mariappan
- Department of Community Medicine, Government Stanley Medical College and Hospital, Chennai 600001, Tamil Nadu, India
| | - Sathish Muthu
- Department of Research Methods, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Government Medical College, Karur 639004, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Shilpa Sharma
- Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
5
|
Aslam S, Qasim M, Noor F, Shahid M, Ashfaq UA, Munir S, Al-Harthi HF, Mashraqi MM, Waqas U, Khurshid M. Potential Target Metabolites From Gut Microbiota Against Hepatocellular Carcinoma: A Network Pharmacology and Molecular Docking Study. Int J Microbiol 2024; 2024:4286228. [PMID: 39502516 PMCID: PMC11537736 DOI: 10.1155/2024/4286228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, posing significant challenges and economic burdens on healthcare systems. Gut microbiota metabolites have shown promise in cancer treatment, but the specific active metabolites and their key targets remain unclear. This study employed a network pharmacology-based approach to identify potent metabolites of gut microbiota and their key targets. Active metabolites produced by gut microbiota were retrieved using the database gutMGene, and targets associated with these metabolites were identified using the Swiss Target Prediction tool. HCC-related targets were obtained from the GeneCards database, and overlapping targets were selected through a Venn diagram tool. An integrated metabolites-target-pathway network was analyzed to identify active inhibitors against HCC, including p-cresol glucuronide, secoisolariciresinol, glycocholic acid, enterodiol, and citric acid. Molecular docking tests were performed to validate the findings and assess the binding affinity of the metabolites with their target proteins. The study identified AKT1, EGFR, ALB, and TNF genes as potential therapeutic targets against hepatic cancer. The metabolites, p-cresol glucuronide, secoisolariciresinol, glycocholic acid, enterodiol, and citric acid, exhibited significant binding affinity with their respective target proteins. The study also revealed multiple signaling pathways and biological processes associated with the metabolites, demonstrating their preventive effect against HCC. This research utilizes a network pharmacology-based approach to identify potent metabolites of gut microbiota and their key targets for the treatment of HCC. The findings were validated through molecular docking tests, providing a foundation for future studies on anti-HCC metabolites and their mechanisms of action. Furthermore, this study offers insights into the development of novel anti-HCC drugs utilizing gut microbiota metabolites.
Collapse
Affiliation(s)
- Sehar Aslam
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fatima Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Samman Munir
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Helal F. Al-Harthi
- Biology Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Najran University, Najran 61441, Saudi Arabia
| | - Umair Waqas
- College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Mohsin Khurshid
- Institute of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
6
|
Kumar AR, Nair B, Kamath AJ, Nath LR, Calina D, Sharifi-Rad J. Impact of gut microbiota on metabolic dysfunction-associated steatohepatitis and hepatocellular carcinoma: pathways, diagnostic opportunities and therapeutic advances. Eur J Med Res 2024; 29:485. [PMID: 39367507 PMCID: PMC11453073 DOI: 10.1186/s40001-024-02072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) and progression to hepatocellular carcinoma (HCC) exhibits distinct molecular and immune characteristics. These traits are influenced by multiple factors, including the gut microbiome, which interacts with the liver through the "gut-liver axis". This bidirectional relationship between the gut and its microbiota and the liver plays a key role in driving various liver diseases, with microbial metabolites and immune responses being central to these processes. Our review consolidates the latest research on how gut microbiota contributes to MASH development and its progression to HCC, emphasizing new diagnostic and therapeutic possibilities. We performed a comprehensive literature review across PubMed/MedLine, Scopus, and Web of Science from January 2000 to August 2024, focusing on both preclinical and clinical studies that investigate the gut microbiota's roles in MASH and HCC. This includes research on pathogenesis, as well as diagnostic and therapeutic advancements related to the gut microbiota. This evidence emphasizes the critical role of the gut microbiome in the pathogenesis of MASH and HCC, highlighting the need for further clinical studies and trials. This is to refine diagnostic techniques and develop targeted therapies that exploit the microbiome's capabilities, aiming to enhance patient care in liver diseases.
Collapse
Affiliation(s)
- Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health. Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
7
|
Ye L, Chen H, Wang J, Tsim KWK, Wang Y, Shen X, Lei H, Liu Y. Aflatoxin B 1-induced liver pyroptosis is mediated by disturbing the gut microbial metabolites: The roles of pipecolic acid and norepinephrine. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134822. [PMID: 38850943 DOI: 10.1016/j.jhazmat.2024.134822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The disturbed gut microbiota is a key factor in activating the aflatoxin B1 (AFB1)-induced liver pyroptosis by promoting inflammatory hepatic injury; however, the pathogen associated molecular pattern (PAMP) from disturbed gut microbiota and its mechanism in activating liver pyroptosis remain undefined. By transplanting AFB1-originated fecal microbiota and sterile fecal microbial metabolites filtrate, we determined the association of PAMP in AFB1-induced liver pyroptosis. Notably, AFB1-originated sterile fecal microbial metabolites filtrate were more active in triggering liver pyroptosis in mice, as compared to parental fecal microbiota. This result supported a critical role of the metabolic homeostasis of gut microbiota in AFB1-induced liver pyroptosis, rather than an injurious response to direct exposure of AFB1 in liver. Among the gut-microbial metabolites, pipecolic acid and norepinephrine were proposed to bind TLR4 and NLRP3, the upstream proteins of pyroptosis signaling pathway. Besides, the activations of TLR4 and NLRP3 were linearly correlated with the concentrations of pipecolic acid and norepinephrine in the serum of mice. In silenced expression of TLR4 and NLRP3 in HepG2 cells, pipecolic acid or norepinephrine did not able to activate hepatocyte pyroptosis. These results demonstrated the necessity of gut microbial metabolism in sustaining liver homeostasis, as well as the potential to provide new insights into targeted intervention for AFB1 hepatotoxicity.
Collapse
Affiliation(s)
- Lin Ye
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 510642 Guangzhou, China; Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., 510700 Guangzhou, China
| | - Huodai Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 510642 Guangzhou, China
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 510642 Guangzhou, China
| | - Karl Wah Keung Tsim
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yurun Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 510642 Guangzhou, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 510642 Guangzhou, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 510642 Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, 510642 Guangzhou, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, 517000 Heyuan, China.
| | - Yunle Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 510642 Guangzhou, China; Guangdong Laboratory for Lingnan Modern Agriculture, 510642 Guangzhou, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, 517000 Heyuan, China.
| |
Collapse
|
8
|
Sikiric P, Sever M, Krezic I, Vranes H, Kalogjera L, Smoday IM, Vukovic V, Oroz K, Coric L, Skoro M, Kavelj I, Zubcic S, Sikiric S, Beketic Oreskovic L, Oreskovic I, Blagaic V, Brcic K, Strbe S, Staresinic M, Boban Blagaic A, Skrtic A, Seiwerth S. New studies with stable gastric pentadecapeptide protecting gastrointestinal tract. significance of counteraction of vascular and multiorgan failure of occlusion/occlusion-like syndrome in cytoprotection/organoprotection. Inflammopharmacology 2024:10.1007/s10787-024-01499-8. [PMID: 38980576 DOI: 10.1007/s10787-024-01499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
Since the early 1990s, when Robert's and Szabo's cytoprotection concept had already been more than one decade old, but still not implemented in therapy, we suggest the stable gastric pentadecapeptide BPC 157 as the most relevant mediator of the cytoprotection concept. Consequently, it can translate stomach and gastrointestinal mucosal maintenance, epithelium, and endothelium cell protection to the therapy of other tissue healing (organoprotection), easily applicable, as native and stable in human gastric juice for more than 24 h. These overwhelm current clinical evidence (i.e., ulcerative colitis, phase II, no side effects, and no lethal dose (LD1) in toxicology studies), as BPC 157 therapy effectively combined various tissue healing and lesions counteraction. BPC 157 cytoprotection relevance and vascular recovery, activation of collateral pathways, membrane stabilizer, eye therapy, wound healing capability, brain-gut and gut-brain functioning, tumor cachexia counteraction, muscle, tendon, ligament, and bone disturbances counteraction, and the heart disturbances, myocardial infarction, heart failure, pulmonary hypertension, arrhythmias, and thrombosis counteraction appeared in the recent reviews. Here, as concept resolution, we review the counteraction of advanced Virchow triad circumstances by activation of the collateral rescuing pathways, depending on injury, activated azygos vein direct blood flow delivery, to counteract occlusion/occlusion-like syndromes starting with the context of alcohol-stomach lesions. Counteraction of major vessel failure (congested inferior caval vein and superior mesenteric vein, collapsed azygos vein, collapsed abdominal aorta) includes counteraction of the brain (intracerebral and intraventricular hemorrhage), heart (congestion, severe arrhythmias), lung (hemorrhage), and congestion and lesions in the liver, kidney, and gastrointestinal tract, intracranial (superior sagittal sinus), portal and caval hypertension, aortal hypotension, and thrombosis, peripherally and centrally.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Skoro
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | | | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Klara Brcic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| |
Collapse
|
9
|
Yang Y, Yang L, Wu J, Hu J, Wan M, Bie J, Li J, Pan D, Sun G, Yang C. Optimal probiotic combinations for treating nonalcoholic fatty liver disease: A systematic review and network meta-analysis. Clin Nutr 2024; 43:1224-1239. [PMID: 38643738 DOI: 10.1016/j.clnu.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Probiotic administration is a promising therapy for improving conditions in NAFLD patients. This network meta-analysis aimed to compare and estimate the relative effects of probiotic interventions and identify the optimal probiotic species for the treatment of NAFLD (Nonalcoholic fatty liver disease) patients. METHODS The PubMed, Web of Science, Embase, and Cochrane databases were searched from inception to 29 January 2024 to identify RCTs that were published in English. The GRADE framework was used to assess the quality of evidence contributing to each network estimate. RESULTS A total of 35 RCTs involving 2212 NAFLD patients were included in the analysis. For primary outcomes, Lactobacillus + Bifidobacterium + Streptococcus exhibited the highest probability of being the finest probiotic combination in terms of enhancing acceptability as well as reducing AST (SMD: -1.95 95% CI: -2.90, -0.99), ALT (SMD = -1.67, 95% CI: -2.48, -0.85), and GGT levels (SMD = -2.17, 95% CI: -3.27, -1.06). In terms of the secondary outcomes, Lactobacillus + Bifidobacterium + Streptococcus was also the best probiotic combination for reducing BMI (SMD = -0.45, 95% CI: -0.86, -0.04), LDL levels (SMD = -0.45, 95% CI: -0.87, -0.02), TC levels (SMD = -1.09, 95% CI: -1.89, -0.29), and TNF-α levels (SMD = -1.73, 95% CI: -2.72, -0.74). CONCLUSION This network meta-analysis revealed that Lactobacillus + Bifidobacterium + Streptococcus may be the most effective probiotic combination for the treatment of liver enzymes, lipid profiles, and inflammation factors. These findings can be used to guide the development of a probiotics-based treatment guideline for NAFLD since there are few direct comparisons between different therapies.
Collapse
Affiliation(s)
- Yafang Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiale Wu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Jing Hu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Min Wan
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Jindi Bie
- Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Jiaxin Li
- Department of Clinical Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Chao Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China.
| |
Collapse
|
10
|
Ramachandran G, Pottakkat B. Probiotics-A Promising Novel Therapeutic Approach in the Management of Chronic Liver Diseases. J Med Food 2024; 27:467-476. [PMID: 38574254 DOI: 10.1089/jmf.2023.k.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
An increased incidence of liver diseases has been observed in recent years and is associated with gut dysbiosis, which causes bacterial infection, intestinal permeability, and further leads to disease-related complications. Probiotics, active microbial strains, are gaining more clinical importance due to their beneficial effect in the management of many diseases, including liver diseases. Clinical scenarios show strong evidence that probiotics have efficacy in treating liver diseases due to their ability to improve epithelial barrier function, prevent bacterial translocation, and boost the immune system. Moreover, probiotics survive both bile and gastric acid to reach the gut and exert their health benefit. Evidence shows that probiotics are a promising approach to prevent several complications in clinical practice. Herein, we discuss the recent evidence, challenges, and appropriate use of probiotics in managing advanced liver diseases, which may have an impact on future therapeutic strategies. Furthermore, the superior effect of strain-specific probiotics and their efficacy and safety in managing liver diseases are discussed.
Collapse
Affiliation(s)
- Gokulapriya Ramachandran
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Biju Pottakkat
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
11
|
Chen H, Ye L, Wang Y, Chen J, Wang J, Li X, Lei H, Liu Y. Aflatoxin B 1 exposure causes splenic pyroptosis by disturbing the gut microbiota-immune axis. Food Funct 2024; 15:3615-3628. [PMID: 38470843 DOI: 10.1039/d3fo04717b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Aflatoxin B1 (AFB1) causes serious immunotoxicity and has attracted considerable attention owing to its high sensitivity and common chemical-viral interactions in living organisms. However, the sensitivity of different species to AFB1 widely varies, which cannot be explained by the different metabolism in species. The gut microbiota plays a crucial role in the immune system, but the interaction of the microbiota with AFB1-induced immunotoxicity still needs to be determined. Our results indicated that AFB1 exposure disrupted the structure of the gut microbiota and damaged the gut barrier, which caused translocation of microbiota metabolites, lipopolysaccharides, to the spleen. Subsequently, pyroptosis of the spleen was activated. Interestingly, AFB1 exposure had little effect on the splenic pyroptosis of pseudo-germfree mice (antibiotic mixtures eliminated their gut microbiota, ABX). Then, fecal microbiota transplant (FMT) and sterile fecal filtrate (SFF) were employed to validate the function of the gut microbiota and its metabolites in AFB1-induced splenic pyroptosis. The AFB1-disrupted microbiota and its metabolites significantly promoted splenic pyroptosis, which was worse than that in control mice. Overall, AFB1-induced splenic pyroptosis is associated with the gut microbiota and its metabolites, which was further demonstrated by FMT and SFF. The mechanism of AFB1-induced splenic pyroptosis was explored for the first time, which paves a new way for preventing and treating the immunotoxicity from mycotoxins by regulating the gut microbiota.
Collapse
Affiliation(s)
- Huodai Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Lin Ye
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Yurun Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Jiahong Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Jie Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Xueling Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China
| | - Yunle Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
- Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China
| |
Collapse
|
12
|
Pinto E, Meneghel P, Farinati F, Russo FP, Pelizzaro F, Gambato M. Efficacy of immunotherapy in hepatocellular carcinoma: Does liver disease etiology have a role? Dig Liver Dis 2024; 56:579-588. [PMID: 37758610 DOI: 10.1016/j.dld.2023.08.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The systemic treatment of hepatocellular carcinoma (HCC) is changing rapidly. After a decade of tyrosine kinase inhibitors (TKIs), as the only therapeutic option for the treatment of advanced HCC, in the last few years several phase III trials demonstrated the efficacy of immune checkpoint inhibitors (ICIs). The combination of the anti-PD-L1 atezolizumab and the anti-vascular endothelial growth factor (VEGF) bevacizumab demonstrated the superiority over sorafenib and currently represents the standard of care treatment for advanced HCC. In addition, the combination of durvalumab (an anti-PD-L1) and tremelimumab (an anti-CTLA4) proved to be superior to sorafenib, and in the same trial durvalumab monotherapy showed non-inferiority compared to sorafenib. However, early reports suggest an influence of HCC etiology in modulating the response to these drugs. In particular, a lower effectiveness of ICIs has been suggested in patients with non-viral HCC (in particular non-alcoholic fatty liver disease). Nevertheless, randomized controlled trials available to date have not been stratified for etiology and data suggesting a possible impact of etiology in the outcome of patients managed with ICIs derive from subgroup not pre-specified analyses. In this review, we aim to examine the potential impact of HCC etiology on the response to immunotherapy regimens for HCC.
Collapse
Affiliation(s)
- Elisa Pinto
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy
| | - Paola Meneghel
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy
| | - Fabio Farinati
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy
| | - Francesco Paolo Russo
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy.
| | - Filippo Pelizzaro
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy
| | - Martina Gambato
- Gastroenterology and Multivisceral Transplant Unit, Padua University Hospital, Padua, Italy.
| |
Collapse
|
13
|
Silva RSD, Mendonça IP, Paiva IHRD, Souza JRBD, Peixoto CA. Fructooligosaccharides and galactooligosaccharides improve hepatic steatosis via gut microbiota-brain axis modulation. Int J Food Sci Nutr 2023; 74:760-780. [PMID: 37771001 DOI: 10.1080/09637486.2023.2262779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Studies have shown that gut dysbiosis is associated with the steatotic liver disease associated with metabolic dysfunction (MALSD) and its severity. This study evaluated the effects of two commercially available prebiotics fructooligosaccharides (FOS) and galactooligosaccharides(GOS) on hepatic adipogenesis, inflammation, and gut microbiota in high-fat diet-induced MALSD. The results indicated that FOS and GOS effectively reduced insulin resistance, hyperglycaemia, triglyceridemia, cholesterolaemia, and IL-1β serum levels. Moreover, FOS and GOS modulated the lipogenic (SREBP-1c, ACC, and FAS) and lipolytic (ATGL) signalling pathways, and reduced inflammatory markers such as p-NFκB-65, IL-6, iNOS, COX-2, TNF-α, IL-1β, and nitrotyrosine. FOS and GOS also enhanced the abundance of acetate producers' bacteria Bacteroides acidifaciens and Bacteroides dorei. FOS and GOS also induced positive POMC/GPR43 neurons at the arcuate nucleus, indicating hypothalamic signalling modulation. Our results suggest that FOS and GOS attenuated MALSD by reducing the hepatic lipogenic pathways and intestinal permeability through the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Rodrigo Soares da Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Brazil
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, Brazil
| |
Collapse
|
14
|
Romualdo GR, Heidor R, Bacil GP, Moreno FS, Barbisan LF. Past, present, and future of chemically induced hepatocarcinogenesis rodent models: Perspectives concerning classic and new cancer hallmarks. Life Sci 2023; 330:121994. [PMID: 37543357 DOI: 10.1016/j.lfs.2023.121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the main primary liver cancer, accounts for 5 % of all incident cases and 8.4 % of all cancer-related deaths worldwide. HCC displays a spectrum of environmental risk factors (viral chronic infections, aflatoxin exposure, alcoholic- and nonalcoholic fatty liver diseases) that result in molecular complexity and heterogeneity, contributing to a rising epidemiological burden, poor prognosis, and non-satisfactory treatment options. The emergence of HCC (i.e., hepatocarcinogenesis) is a multistep and complex process that addresses many (epi)genetic alterations and phenotypic traits, the so-called cancer hallmarks. "Polymorphic microbiomes", "epigenetic reprogramming", "senescent cells" and "unlocking phenotypic plasticity" are trending hallmarks/enabling features in cancer biology. As the main molecular drivers of HCC are still undruggable, chemically induced in vivo models of hepatocarcinogenesis are useful tools in preclinical research. Thus, this narrative review aimed at recapitulating the basic features of chemically induced rodent models of hepatocarcinogenesis, eliciting their permanent translational value regarding the "classic" and the "new" cancer hallmarks/enabling features. We gathered state-of-art preclinical evidence on non-cirrhotic, inflammation-, alcoholic liver disease- and nonalcoholic fatty liver-associated HCC models, demonstrating that these bioassays indeed express the recently added hallmarks, as well as reflect the interplay between classical and new cancer traits. Our review demonstrated that these protocols remain valuable for translational preclinical application, as they recapitulate trending features of cancer science. Further "omics-based" approaches are warranted while multimodel investigations are encouraged in order to avoid "model-biased" responses.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Renato Heidor
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Laboratory of Diet, Nutrition, and Cancer, São Paulo, SP, Brazil
| | - Gabriel Prata Bacil
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Fernando Salvador Moreno
- University of São Paulo (USP), Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Laboratory of Diet, Nutrition, and Cancer, São Paulo, SP, Brazil
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil.
| |
Collapse
|
15
|
Trivedi Y, Bolgarina Z, Desai HN, Senaratne M, Swami SS, Aye SL, Mohammed L. The Role of Gut Microbiome in Hepatocellular Carcinoma: A Systematic Review. Cureus 2023; 15:e43862. [PMID: 37614827 PMCID: PMC10442465 DOI: 10.7759/cureus.43862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023] Open
Abstract
Gut microbiome dysbiosis is common in patients with chronic liver diseases such as hepatocellular carcinoma (HCC) and plays an essential role in developing, diagnosing, and treating HCC. The purpose of this systematic review, which was carried out following the Preferred Reporting Items for Systematic Review and Meta-analyses 2020 guidelines, is to determine the role of the gut microbiome in the pathogenesis, diagnosis, and treatment of HCC. We collected and reviewed articles, including clinical trials, literature reviews, case-control studies, cross-sectional studies, cohort studies, systematic reviews, and meta-analyses, published between May 30, 2013, and May 30, 2023. The databases used to collect these articles included PubMed, Cochrane Library, Google Scholar, and ScienceDirect. After applying appropriate filters, a total of 2,969 studies were identified. They were further screened and subjected to quality assessment tools which finally yielded 17 studies included in this systematic review. This systematic review provides information regarding the gut-liver axis and the relationship between gut microbiome dysbiosis and HCC.
Collapse
Affiliation(s)
- Yash Trivedi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Zoryana Bolgarina
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Heet N Desai
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mithum Senaratne
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Shivling S Swami
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Soe Lwin Aye
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
16
|
Ye L, Chen H, Tsim KWK, Shen X, Li X, Li X, Lei H, Liu Y. Aflatoxin B 1 Induces Inflammatory Liver Injury via Gut Microbiota in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37406338 DOI: 10.1021/acs.jafc.3c02617] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Aflatoxin B1 (AFB1), a potent food-borne hepatocarcinogen, is the most toxic aflatoxin that induces liver injury in humans and animals. Species-specific sensitivities of aflatoxins cannot be fully explained by differences in the metabolism of AFB1 between animal species. The gut microbiota are critical in inflammatory liver injury, but it remains to reveal the role of gut microbiota in AFB1-induced liver injury. Here, mice were gavaged with AFB1 for 28 days. Then, the modulation of gut microbiota, colonic barrier, and liver pyroptosis and inflammation were analyzed. To further verify the direct role of gut microbiota in AFB1-induced liver injury, mice were treated with antibiotic mixtures (ABXs) to deplete the microbiota, and fecal microbiota transplantation (FMT) was conducted. The treatment of AFB1 in mice altered gut microbiota composition, such as increasing the relative abundance of Bacteroides, Parabacteroides, and Lactobacillus, inducing colonic barrier dysfunction and promoting liver pyroptosis. In ABX-treated mice, AFB1 had little effect on the colonic barrier and liver pyroptosis. Notably, after FMT, in which the mice were colonized with gut microbiota from AFB1-treated mice, colonic barrier dysfunction, and liver pyroptosis and inflammation were obliviously identified. We proposed that the gut microbiota directly participated in AFB1-induced liver pyroptosis and inflammation. These results provide new insights into the mechanisms of AFB1 hepatotoxicity and pave a window for new targeted interventions to prevent or reduce AFB1 hepatotoxicity.
Collapse
Affiliation(s)
- Lin Ye
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Huodai Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Karl Wah Keung Tsim
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Xueling Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yunle Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
17
|
Purdel C, Ungurianu A, Adam-Dima I, Margină D. Exploring the potential impact of probiotic use on drug metabolism and efficacy. Biomed Pharmacother 2023; 161:114468. [PMID: 36868015 DOI: 10.1016/j.biopha.2023.114468] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Probiotics are frequently consumed as functional food and widely used as dietary supplements, but are also recommended in treating or preventing various gastrointestinal diseases. Therefore, their co-administration with other drugs is sometimes unavoidable or even compulsory. Recent technological developments in the pharmaceutical industry permitted the development of novel drug-delivery systems for probiotics, allowing their addition to the therapy of severely ill patients. Literature data regarding the changes that probiotics could impose on the efficacy or safety of chronic medication is scarce. In this context, the present paper aims to review probiotics currently recommended by the international medical community, to evaluate the relationship between gut microbiota and various pathologies with high impact worldwide and, most importantly, to assess the literature reports concerning the ability of probiotics to influence the pharmacokinetics/pharmacodynamics of some widely used drugs, especially for those with narrow therapeutic indexes. A better understanding of the potential influence of probiotics on drug metabolism, efficacy and safety could contribute to improving therapy management, facilitating individualized therapy and updating treatment guidelines.
Collapse
Affiliation(s)
- Carmen Purdel
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Anca Ungurianu
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania.
| | - Ines Adam-Dima
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Denisa Margină
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania
| |
Collapse
|
18
|
Xu Z, Jiang N, Xiao Y, Yuan K, Wang Z. The role of gut microbiota in liver regeneration. Front Immunol 2022; 13:1003376. [PMID: 36389782 PMCID: PMC9647006 DOI: 10.3389/fimmu.2022.1003376] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
The liver has unique regeneration potential, which ensures the continuous dependence of the human body on hepatic functions. As the composition and function of gut microbiota has been gradually elucidated, the vital role of gut microbiota in liver regeneration through gut-liver axis has recently been accepted. In the process of liver regeneration, gut microbiota composition is changed. Moreover, gut microbiota can contribute to the regulation of the liver immune microenvironment, thereby modulating the release of inflammatory factors including IL-6, TNF-α, HGF, IFN-γ and TGF-β, which involve in different phases of liver regeneration. And previous research have demonstrated that through enterohepatic circulation, bile acids (BAs), lipopolysaccharide, short-chain fatty acids and other metabolites of gut microbiota associate with liver and may promote liver regeneration through various pathways. In this perspective, by summarizing gut microbiota-derived signaling pathways that promote liver regeneration, we unveil the role of gut microbiota in liver regeneration and provide feasible strategies to promote liver regeneration by altering gut microbiota composition.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Nan Jiang
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yuanyuan Xiao
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- *Correspondence: Zhen Wang, ; Kefei Yuan, ; Yuanyuan Xiao,
| | - Kefei Yuan
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- *Correspondence: Zhen Wang, ; Kefei Yuan, ; Yuanyuan Xiao,
| | - Zhen Wang
- Department of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
- *Correspondence: Zhen Wang, ; Kefei Yuan, ; Yuanyuan Xiao,
| |
Collapse
|
19
|
Marascio N, De Caro C, Quirino A, Mazzitelli M, Russo E, Torti C, Matera G. The Role of the Microbiota Gut-Liver Axis during HCV Chronic Infection: A Schematic Overview. J Clin Med 2022; 11:5936. [PMID: 36233804 PMCID: PMC9572099 DOI: 10.3390/jcm11195936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatitis C virus (HCV) still represents one of the most important worldwide health care problems. Since 2011, direct-acting antiviral (DAA) drugs have increased the number of people who have achieved a sustained virological response (SVR). Even if the program to eradicate HCV by 2030 is still ongoing, the SARS-CoV-2 pandemic has created a delay due to the reallocation of public health resources. HCV is characterized by high genetic variability and is responsible for hepatic and extra-hepatic diseases. Depending on the HCV genotype/subtype and comorbidities of patients, tailored treatment is necessary. Recently, it has been shown that liver damage impacts gut microbiota, altering the microbial community (dysbiosis) during persistent viral replication. An increasing number of studies are trying to clarify the role of the gut-liver axis during HCV chronic infection. DAA therapy, by restoring the gut microbiota equilibrium, seems to improve liver disease progression in both naïve and treated HCV-positive patients. In this review, we aim to discuss a snapshot of selected peer-reviewed papers concerning the interplay between HCV and the gut-liver axis.
Collapse
Affiliation(s)
- Nadia Marascio
- Clinical Microbiology Unit, Department of Health Science, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Carmen De Caro
- System and Applied Pharmacology, Department of Health Science, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Angela Quirino
- Clinical Microbiology Unit, Department of Health Science, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Maria Mazzitelli
- Infectious and Tropical Diseases Unit, University Hospital of Padua, 35128 Padua, Italy
| | - Emilio Russo
- System and Applied Pharmacology, Department of Health Science, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Carlo Torti
- Infectious and Tropical Diseases Unit, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy
| | - Giovanni Matera
- Clinical Microbiology Unit, Department of Health Science, “Magna Graecia” University, 88100 Catanzaro, Italy
| |
Collapse
|
20
|
Food and Gut Microbiota-Derived Metabolites in Nonalcoholic Fatty Liver Disease. Foods 2022; 11:foods11172703. [PMID: 36076888 PMCID: PMC9455821 DOI: 10.3390/foods11172703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022] Open
Abstract
Diet and lifestyle are crucial factors that influence the susceptibility of humans to nonalcoholic fatty liver disease (NAFLD). Personalized diet patterns chronically affect the composition and activity of microbiota in the human gut; consequently, nutrition-related dysbiosis exacerbates NAFLD via the gut–liver axis. Recent advances in diagnostic technology for gut microbes and microbiota-derived metabolites have led to advances in the diagnosis, treatment, and prognosis of NAFLD. Microbiota-derived metabolites, including tryptophan, short-chain fatty acid, fat, fructose, or bile acid, regulate the pathophysiology of NAFLD. The microbiota metabolize nutrients, and metabolites are closely related to the development of NAFLD. In this review, we discuss the influence of nutrients, gut microbes, their corresponding metabolites, and metabolism in the pathogenesis of NAFLD.
Collapse
|
21
|
Microbiome-Based Metabolic Therapeutic Approaches in Alcoholic Liver Disease. Int J Mol Sci 2022; 23:ijms23158749. [PMID: 35955885 PMCID: PMC9368757 DOI: 10.3390/ijms23158749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Alcohol consumption is a global healthcare problem. Chronic alcohol consumption generates a wide spectrum of hepatic lesions, the most characteristic of which are steatosis, hepatitis, fibrosis, and cirrhosis. Alcoholic liver diseases (ALD) refer to liver damage and metabolomic changes caused by excessive alcohol intake. ALD present several clinical stages of severity found in liver metabolisms. With increased alcohol consumption, the gut microbiome promotes a leaky gut, metabolic dysfunction, oxidative stress, liver inflammation, and hepatocellular injury. Much attention has focused on ALD, such as alcoholic fatty liver (AFL), alcoholic steatohepatitis (ASH), alcoholic cirrhosis (AC), hepatocellular carcinoma (HCC), a partnership that reflects the metabolomic significance. Here, we report on the global function of inflammation, inhibition, oxidative stress, and reactive oxygen species (ROS) mechanisms in the liver biology framework. In this tutorial review, we hypothetically revisit therapeutic gut microbiota-derived alcoholic oxidative stress, liver inflammation, inflammatory cytokines, and metabolic regulation. We summarize the perspective of microbial therapy of genes, gut microbes, and metabolic role in ALD. The end stage is liver transplantation or death. This review may inspire a summary of the gut microbial genes, critical inflammatory molecules, oxidative stress, and metabolic routes, which will offer future promising therapeutic compounds in ALD.
Collapse
|
22
|
Khalyfa AA, Punatar S, Yarbrough A. Hepatocellular Carcinoma: Understanding the Inflammatory Implications of the Microbiome. Int J Mol Sci 2022; 23:ijms23158164. [PMID: 35897739 PMCID: PMC9332105 DOI: 10.3390/ijms23158164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 01/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. It is well known that repeated inflammatory insults in the liver can cause hepatic cellular injury that lead to cirrhosis and, ultimately, hepatocellular carcinoma. Furthermore, the microbiome has been implicated in multiple inflammatory conditions which predispose patients to malignancy. With this in mind, we explore the inflammatory implications of the microbiome on pathways that lead to HCC. We also focus on how an understanding of these underlying inflammatory principles lead to a more wholistic understanding of this deadly disease, as well as potential therapeutic implications.
Collapse
Affiliation(s)
- Ahamed A. Khalyfa
- Department of Internal Medicine, Franciscan Health Olympia Fields, Olympia Fields, IL 60461, USA;
- Correspondence:
| | - Shil Punatar
- Department of Internal Medicine, Franciscan Health Olympia Fields, Olympia Fields, IL 60461, USA;
| | - Alex Yarbrough
- Department of Gastroenterology, Franciscan Health Olympia Fields, Olympia Fields, IL 60461, USA;
| |
Collapse
|
23
|
The Activity of Prebiotics and Probiotics in Hepatogastrointestinal Disorders and Diseases Associated with Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23137229. [PMID: 35806234 PMCID: PMC9266451 DOI: 10.3390/ijms23137229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
The components of metabolic syndrome (MetS) and hepatogastrointestinal diseases are widespread worldwide, since many factors associated with lifestyle and diet influence their development and correlation. Due to these growing health problems, it is necessary to search for effective alternatives for prevention or adjuvants in treating them. The positive impact of regulated microbiota on health is known; however, states of dysbiosis are closely related to the development of the conditions mentioned above. Therefore, the role of prebiotics, probiotics, or symbiotic complexes has been extensively evaluated; the results are favorable, showing that they play a crucial role in the regulation of the immune system, the metabolism of carbohydrates and lipids, and the biotransformation of bile acids, as well as the modulation of their central receptors FXR and TGR-5, which also have essential immunomodulatory and metabolic activities. It has also been observed that they can benefit the host by displacing pathogenic species, improving the dysbiosis state in MetS. Current studies have reported that paraprobiotics (dead or inactive probiotics) or postbiotics (metabolites generated by active probiotics) also benefit hepatogastrointestinal health.
Collapse
|
24
|
Stella L, Santopaolo F, Gasbarrini A, Pompili M, Ponziani FR. Viral hepatitis and hepatocellular carcinoma: From molecular pathways to the role of clinical surveillance and antiviral treatment. World J Gastroenterol 2022; 28:2251-2281. [PMID: 35800182 PMCID: PMC9185215 DOI: 10.3748/wjg.v28.i21.2251] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/08/2021] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a global health challenge. Due to the high prevalence in low-income countries, hepatitis B virus (HBV) and hepatitis C virus infections remain the main risk factors for HCC occurrence, despite the increasing frequencies of non-viral etiologies. In addition, hepatitis D virus coinfection increases the oncogenic risk in patients with HBV infection. The molecular processes underlying HCC development are complex and various, either independent from liver disease etiology or etiology-related. The reciprocal interlinkage among non-viral and viral risk factors, the damaged cellular microenvironment, the dysregulation of the immune system and the alteration of gut-liver-axis are known to participate in liver cancer induction and progression. Oncogenic mechanisms and pathways change throughout the natural history of viral hepatitis with the worsening of liver fibrosis. The high risk of cancer incidence in chronic viral hepatitis infected patients compared to other liver disease etiologies makes it necessary to implement a proper surveillance, both through clinical-biochemical scores and periodic ultrasound assessment. This review aims to outline viral and microenvironmental factors contributing to HCC occurrence in patients with chronic viral hepatitis and to point out the importance of surveillance programs recommended by international guidelines to promote early diagnosis of HCC.
Collapse
Affiliation(s)
- Leonardo Stella
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome 00168, Italy
| |
Collapse
|
25
|
Mohamed A, Asa SL, McCormick T, Al-Shakhshir H, Dasari A, Mauricio R, Salem I, Ocuin LM, Bajor D, Lee RT, Selfridge JE, Kardan A, Lee Z, Avril N, Kopp S, Winter JM, Hardacre JM, Ammori JB, Ghannoum MA. The Role of the Microbiome in Gastroentero-Pancreatic Neuroendocrine Neoplasms (GEP-NENs). Curr Issues Mol Biol 2022; 44:2015-2028. [PMID: 35678665 PMCID: PMC9164086 DOI: 10.3390/cimb44050136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Gut microbiome balance plays a key role in human health and maintains gut barrier integrity. Dysbiosis, referring to impaired gut microbiome, is linked to a variety of diseases, including cancers, through modulation of the inflammatory process. Most studies concentrated on adenocarcinoma of different sites with very limited information on gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). In this study, we have analyzed the gut microbiome (both fungal and bacterial communities) in patients with metastatic GEP-NENs. Fecal samples were collected and compared with matched healthy control samples using logistic regression distances utilizing R package MatchIt (version 4.2.0, Daniel E. Ho, Stanford, California). We examined differences in microbiome profiles between GEP-NENs and control samples using small subunit (SSU) rRNA (16S), ITS1, ITS4 genomic regions for their ability to accurately characterize bacterial and fungal communities. We correlated the results with different behavioral and dietary habits, and tumor features including differentiation, grade, primary site, and therapeutic response. All tests are two-sided and p-values ≤ 0.05 were considered statistically significant. Gut samples of 34 patients (12 males, 22 females, median age 64 years) with metastatic GEP-NENs (22 small bowel, 10 pancreatic, 1 gall bladder, and 1 unknown primary) were analyzed. Twenty-nine patients had well differentiated GEP-neuroendocrine tumors (GEP-NETs), (G1 = 14, G2 = 12, G3 = 3) and five patients had poorly differentiated GEP-neuroendocrine carcinomas (GEP-NECs). Patients with GEP-NENs had significantly decreased bacterial species and increased fungi (notably Candida species, Ascomycota, and species belonging to saccharomycetes) compared to controls. Patients with GEP-NECs had significantly enriched populations of specific bacteria and fungi (such as Enterobacter hormaechei, Bacteroides fragilis and Trichosporon asahii) compared to those with GEP-NETs (p = 0.048, 0.0022 and 0.034, respectively). In addition, higher grade GEP-NETs were associated with significantly higher Bacteroides fragilis (p = 0.022), and Eggerthella lenta (p = 0.00018) species compared to lower grade tumors. There were substantial differences associated with dietary habits and therapeutic responses. This is the first study to analyze the role of the microbiome environment in patients with GEP-NENs. There were significant differences between GEP-NETs and GEP-NECs, supporting the role of the gut microbiome in the pathogenesis of these two distinct entities.
Collapse
Affiliation(s)
- Amr Mohamed
- Division of Hematology and Medical Oncology, UH Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (D.B.); (R.T.L.); (J.E.S.); (S.K.)
- Correspondence:
| | - Sylvia L. Asa
- Department of Pathology, UH Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Thomas McCormick
- Department of Dermatology, Integrated Microbiome Core and Center for Medical Mycology, Case Western Reserve University, Cleveland, OH 44106, USA; (T.M.); (H.A.-S.); (R.M.); (I.S.); (M.A.G.)
| | - Hilmi Al-Shakhshir
- Department of Dermatology, Integrated Microbiome Core and Center for Medical Mycology, Case Western Reserve University, Cleveland, OH 44106, USA; (T.M.); (H.A.-S.); (R.M.); (I.S.); (M.A.G.)
| | - Arvind Dasari
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA;
| | - Retuerto Mauricio
- Department of Dermatology, Integrated Microbiome Core and Center for Medical Mycology, Case Western Reserve University, Cleveland, OH 44106, USA; (T.M.); (H.A.-S.); (R.M.); (I.S.); (M.A.G.)
| | - Iman Salem
- Department of Dermatology, Integrated Microbiome Core and Center for Medical Mycology, Case Western Reserve University, Cleveland, OH 44106, USA; (T.M.); (H.A.-S.); (R.M.); (I.S.); (M.A.G.)
| | - Lee M. Ocuin
- Division of Surgical Oncology, UH Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (L.M.O.); (J.M.W.); (J.M.H.); (J.B.A.)
| | - David Bajor
- Division of Hematology and Medical Oncology, UH Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (D.B.); (R.T.L.); (J.E.S.); (S.K.)
| | - Richard T. Lee
- Division of Hematology and Medical Oncology, UH Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (D.B.); (R.T.L.); (J.E.S.); (S.K.)
| | - J. Eva Selfridge
- Division of Hematology and Medical Oncology, UH Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (D.B.); (R.T.L.); (J.E.S.); (S.K.)
| | - Arash Kardan
- Department of Radiology, UH Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (A.K.); (Z.L.); (N.A.)
| | - Zhenghong Lee
- Department of Radiology, UH Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (A.K.); (Z.L.); (N.A.)
| | - Norbert Avril
- Department of Radiology, UH Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (A.K.); (Z.L.); (N.A.)
| | - Shelby Kopp
- Division of Hematology and Medical Oncology, UH Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (D.B.); (R.T.L.); (J.E.S.); (S.K.)
| | - Jordan M. Winter
- Division of Surgical Oncology, UH Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (L.M.O.); (J.M.W.); (J.M.H.); (J.B.A.)
| | - Jeffrey M. Hardacre
- Division of Surgical Oncology, UH Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (L.M.O.); (J.M.W.); (J.M.H.); (J.B.A.)
| | - John B. Ammori
- Division of Surgical Oncology, UH Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (L.M.O.); (J.M.W.); (J.M.H.); (J.B.A.)
| | - Mahmoud A. Ghannoum
- Department of Dermatology, Integrated Microbiome Core and Center for Medical Mycology, Case Western Reserve University, Cleveland, OH 44106, USA; (T.M.); (H.A.-S.); (R.M.); (I.S.); (M.A.G.)
| |
Collapse
|
26
|
Selvaggi F, Catalano T, Cotellese R, Aceto GM. Targeting Wnt/β-Catenin Pathways in Primary Liver Tumours: From Microenvironment Signaling to Therapeutic Agents. Cancers (Basel) 2022; 14:cancers14081912. [PMID: 35454818 PMCID: PMC9024538 DOI: 10.3390/cancers14081912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/17/2022] Open
Abstract
Primary liver cancers (PLCs) are steadily increasing in incidence and mortality in the world. They have a poor prognosis due to their silent nature, late discovery and resistance to common chemotherapy. At present, there are limited treatment alternatives, and the understanding of PLC molecular aspects is essential to develop more efficient drugs and therapeutic surgical and loco-regional strategies. A clear causal link with liver damage, inflammation, and regeneration has been found in the occurrence of PLC over the last few decades. Physiologically, Wingless/It (Wnt)-β-catenin signaling plays a key role in liver development, metabolic zonation and regeneration. Loss of functional homeostasis of this pathway appears to be a major driver of carcinogenesis in the liver parenchyma. In the hepatic microenvironment, molecular deregulations that exceed the Wnt signaling biological capacity can induce tumor initiation and progression. Indeed, somatic mutations are identified in key components of canonical and non-canonical Wnt signaling and in PLCs and precancerous lesions. In this review, the altered functions of Wnt/β-catenin signaling are considered in human PLCs, with emphasis on hepatocellular carcinomas (HCC), cholangiocarcinomas (CCA) and hepatoblastomas (HB). Based on recent literature, we also focused on liver cancerogenesis through Wnt deregulation. An overview of preclinical and clinical studies on approved and experimental drugs, targeting the Wnt/β-catenin cascade in PLCs, is proposed. In addition, the clinical implication of molecule inhibitors that have been shown to possess activity against the Wnt pathway in association with conventional surgical and loco-regional therapies are reviewed.
Collapse
Affiliation(s)
- Federico Selvaggi
- Unit of General Surgery, Ospedale Floraspe Renzetti, 66034 Lanciano, Chieti, Italy;
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Pescara, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
- Correspondence:
| |
Collapse
|
27
|
Liu J, Yang D, Wang X, Asare PT, Zhang Q, Na L, Shao L. Gut Microbiota Targeted Approach in the Management of Chronic Liver Diseases. Front Cell Infect Microbiol 2022; 12:774335. [PMID: 35444959 PMCID: PMC9014089 DOI: 10.3389/fcimb.2022.774335] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The liver is directly connected to the intestines through the portal vein, which enables the gut microbiota and gut-derived products to influence liver health. There is accumulating evidence of decreased gut flora diversity and alcohol sensitivity in patients with various chronic liver diseases, including non-alcoholic/alcoholic liver disease, chronic hepatitis virus infection, primary sclerosing cholangitis and liver cirrhosis. Increased intestinal mucosal permeability and decline in barrier function were also found in these patients. Followed by bacteria translocation and endotoxin uptake, these will lead to systemic inflammation. Specific microbiota and microbiota-derived metabolites are altered in various chronic liver diseases studies, but the complex interaction between the gut microbiota and liver is missing. This review article discussed the bidirectional relationship between the gut and the liver, and explained the mechanisms of how the gut microbiota ecosystem alteration affects the pathogenesis of chronic liver diseases. We presented gut-microbiota targeted interventions that could be the new promising method to manage chronic liver diseases.
Collapse
Affiliation(s)
- Jing Liu
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital; The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dakai Yang
- Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaojing Wang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Paul Tetteh Asare
- Human and Animal Health Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Qingwen Zhang
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital; The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lixin Na
- Department of Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital; The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lei Shao
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Lei Shao,
| |
Collapse
|
28
|
Roles of Microbiota in Cancer: From Tumor Development to Treatment. JOURNAL OF ONCOLOGY 2022; 2022:3845104. [PMID: 35342407 PMCID: PMC8941494 DOI: 10.1155/2022/3845104] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022]
Abstract
Cancer as a second leading cause of death arises from multifactorial pathology. The association of microbiota and their products with various pathologic conditions including cancer is receiving significant attention over the past few years. Mounting evidence showed that human microbiota is an emerging target in tumor onset, progression, prevention, and even diagnosis. Accordingly, modulating this composition might influence the response to tumor therapy and therapeutic resistance as well. Through this review, one could conceive of complex interaction between the microbiome and cancer in either positive or negative manner by which may hold potential for finding novel preventive and therapeutic strategies against cancer.
Collapse
|
29
|
Khoshnevisan K, Chehrehgosha M, Conant M, Mohammad Meftah A, Baharifar H, Ejtahed HS, Angoorani P, Gholami M, Sharifi F, Maleki H, Larijani B, Khorramizadeh MR. Interactive relationship between Trp metabolites and gut microbiota: The impact on human pathology of disease. J Appl Microbiol 2022; 132:4186-4207. [PMID: 35304801 DOI: 10.1111/jam.15533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/24/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022]
Abstract
Tryptophan (Trp), an α-amino acid, is the precursor of serotonin (5-hydroxytryptamine, 5-HT), which is involved in a variety of features of metabolic function and human nutrition. Evidence highlights the role of Trp metabolites (exclusively 5-HT) in the gastrointestinal (GI) tract; however, the mechanisms of action involved in the release of 5-HT in the GI tract are still unknown. Considering the fact that variations of 5-HT may facilitate the growth of certain GI disorders, gaining a better understanding of the function and release of 5-HT in the GI tract would be beneficial. Additionally, investigating Trp metabolism may clarify the relationship between Trp and gut microbiota. It is believed that other metabolites of Trp (mostly that of the kynurenine pathway) may play a significant role in controlling gut microbiota function. In this review, we have attempted to summarize the current research investigating the relationship of gut microbiota, Trp, and 5-HT metabolism (with particular attention paid to their metabolite type, as well as a discussion of the research methods used in each study). Taking together, regarding the role that Trp/5-HT plays in a range of physical and mental diseases, the gut bacterial types, as well as the related disorders, have been exclusively considered.
Collapse
Affiliation(s)
- Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Chehrehgosha
- Department of Surgical Technology, Paramedical School, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Gerontology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Melissa Conant
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Amir Mohammad Meftah
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Hadi Baharifar
- Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooneh Angoorani
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Gholami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Maleki
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khorramizadeh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Gut Microbiome in Non-Alcoholic Fatty Liver Disease: From Mechanisms to Therapeutic Role. Biomedicines 2022; 10:biomedicines10030550. [PMID: 35327352 PMCID: PMC8945462 DOI: 10.3390/biomedicines10030550] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered to be a significant health threat globally, and has attracted growing concern in the research field of liver diseases. NAFLD comprises multifarious fatty degenerative disorders in the liver, including simple steatosis, steatohepatitis and fibrosis. The fundamental pathophysiology of NAFLD is complex and multifactor-driven. In addition to viruses, metabolic syndrome and alcohol, evidence has recently indicated that the microbiome is related to the development and progression of NAFLD. In this review, we summarize the possible microbiota-based therapeutic approaches and highlight the importance of establishing the diagnosis of NAFLD through the different spectra of the disease via the gut–liver axis.
Collapse
|
31
|
Bi C, Xiao G, Liu C, Yan J, Chen J, Si W, Zhang J, Liu Z. Molecular Immune Mechanism of Intestinal Microbiota and Their Metabolites in the Occurrence and Development of Liver Cancer. Front Cell Dev Biol 2021; 9:702414. [PMID: 34957088 PMCID: PMC8693382 DOI: 10.3389/fcell.2021.702414] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal microorganisms are closely associated with immunity, metabolism, and inflammation, and play an important role in health and diseases such as inflammatory bowel disease, diabetes, cardiovascular disease, Parkinson’s disease, and cancer. Liver cancer is one of the most fatal cancers in humans. Most of liver cancers are slowly transformed from viral hepatitis, alcoholic liver disease, and non-alcoholic fatty liver disease. However, the relationship between intestinal microbiota and their metabolites, including short-chain fatty acids, bile acids, indoles, and ethanol, and liver cancer remains unclear. Here, we summarize the molecular immune mechanism of intestinal microbiota and their metabolites in the occurrence and development of liver cancer and reveal the important role of the microbiota-gut-liver axis in liver cancer. In addition, we describe how the intestinal flora can be balanced by antibiotics, probiotics, postbiotics, and fecal bacteria transplantation to improve the treatment of liver cancer. This review describes the immunomolecular mechanism of intestinal microbiota and their metabolites in the occurrence and development of hepatic cancer and provides theoretical evidence support for future clinical practice.
Collapse
Affiliation(s)
- Chenchen Bi
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Geqiong Xiao
- Department of Oncology, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Chunyan Liu
- Department of Clinical Medicine, Shaoxing People's Hospital, Shaoxing, China
| | - Junwei Yan
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Jiaqi Chen
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Wenzhang Si
- Department of General Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Jian Zhang
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| | - Zheng Liu
- Department of Pharmacology, Medical College of Shaoxing University, Shaoxing, China
| |
Collapse
|
32
|
Mohamed AA, Abo-Amer YEE, Aalkhalegy A, Fathalla LA, Elmaghraby MB, Elhoseeny MM, Mostafa SM, El-Abgeegy M, Khattab RA, El-damasy DA, Salah W, Salem AM, Elmashad WM, Elbahnasawy M, Abd-Elsalam S. COL1A1 Gene Expression in Hepatitis B Virus (HBV) Related Hepatocellular Carcinoma (HCC) Egyptian's Patients. THE OPEN BIOMARKERS JOURNAL 2021; 11:108-114. [DOI: 10.2174/1875318302111010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/28/2021] [Accepted: 08/26/2021] [Indexed: 09/01/2023]
Abstract
Introduction:
Collagens are the most abundant proteins in the human body, accounting for one-third of total proteins. Over the last few years, accumulated evidence have indicated that some collagens are differentially expressed in cancer. The aim of the study was to assess COL1A1 gene expression as a novel marker for the progression of hepatitis B cirrhosis into hepatocellular carcinoma.
Methods:
This cohort study included 348 subjects and was conducted between May 2018 and June 2019. Subjects were divided into 4 groups: group1 included HBV positive hepatocellular carcinoma patients “HCC” (n= 87), group II included HBV positive patients with liver cirrhosis “LC” (n = 87), group III included chronic hepatitis B patients with neither HCC nor cirrhosis “ C-HBV” (n = 87) and group IV consisted of healthy volunteers as controls (n = 87). Fasting venous blood samples (10 ml) were collected from each participant in this study and were used for assessment of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin, albumin and alfa-fetoprotein (AFP). Another portion of blood was collected in 2 vacutainer tubes containing EDTA, one for Complete blood count and the other for gene expression of COL1A1.
Results:
The gene expression of collagen was 6.9 ± 8.8 in group 1 (HBV positive hepatocellular carcinoma patients) and this was a significant increase in comparison with the other groups. In group 2 (HBV positive patients with liver cirrhosis), the gene expression (collagen) was 3.7±1.5 and it was significantly increased when compared with group 4 (healthy volunteers).
Conclusion:
COL1A1 gene expression can be used as an indicator of the progression of hepatitis B cirrhosis into hepatocellular carcinoma.
Collapse
|
33
|
Nath LR, Murali M, Nair B. Critical biomarkers of hepatocellular carcinoma in body fluids and gut microbiota. World J Gastrointest Oncol 2021; 13:2219-2222. [PMID: 35070054 PMCID: PMC8713307 DOI: 10.4251/wjgo.v13.i12.2219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and one of the major causes of cancer-related death. The development of specific non-invasive or diagnostic markers from blood, urine and feces may represent a valuable tool for detecting HCC at an early stage. Biomarkers are considered novel potential targets for therapeutic intervention. It helps in the prediction of prognosis or recurrence of HCC, and also assist in the selection of appropriate treatment modality. We summarize the most relevant existing data about various biomarkers that play a key role in the progression of HCC.
Collapse
Affiliation(s)
- Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Maneesha Murali
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| | - Bhagyalakshmi Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi 682041, Kerala, India
| |
Collapse
|
34
|
Yu JS, Youn GS, Choi J, Kim C, Kim BY, Yang S, Lee JH, Park T, Kim BK, Kim YB, Roh SW, Min BH, Park HJ, Yoon SJ, Lee NY, Choi YR, Kim HS, Gupta H, Sung H, Han SH, Suk KT, Lee DY. Lactobacillus lactis and Pediococcus pentosaceus-driven reprogramming of gut microbiome and metabolome ameliorates the progression of non-alcoholic fatty liver disease. Clin Transl Med 2021; 11:e634. [PMID: 34965016 PMCID: PMC8715831 DOI: 10.1002/ctm2.634] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although microbioa-based therapies have shown putative effects on the treatment of non-alcoholic fatty liver disease (NAFLD), it is not clear how microbiota-derived metabolites contribute to the prevention of NAFLD. We explored the metabolomic signature of Lactobacillus lactis and Pediococcus pentosaceus in NAFLD mice and its association in NAFLD patients. METHODS We used Western diet-induced NAFLD mice, and L. lactis and P. pentosaceus were administered to animals in the drinking water at a concentration of 109 CFU/g for 8 weeks. NAFLD severity was determined based on liver/body weight, pathology and biochemistry markers. Caecal samples were collected for the metagenomics by 16S rRNA sequencing. Metabolite profiles were obtained from caecum, liver and serum. Human stool samples (healthy control [n = 22] and NAFLD patients [n = 23]) were collected to investigate clinical reproducibility for microbiota-derived metabolites signature and metabolomics biomarker. RESULTS L. lactis and P. pentosaceus supplementation effectively normalized weight ratio, NAFLD activity score, biochemical markers, cytokines and gut-tight junction. While faecal microbiota varied according to the different treatments, key metabolic features including short chain fatty acids (SCFAs), bile acids (BAs) and tryptophan metabolites were analogously restored by both probiotic supplementations. The protective effects of indole compounds were validated with in vitro and in vivo models, including anti-inflammatory effects. The metabolomic signatures were replicated in NAFLD patients, accompanied by the comparable levels of Firmicutes/Bacteroidetes ratio, which was significantly higher (4.3) compared with control (0.6). Besides, the consequent biomarker panel with six stool metabolites (indole, BAs, and SCFAs) showed 0.922 (area under the curve) in the diagnosis of NAFLD. CONCLUSIONS NAFLD progression was robustly associated with metabolic dys-regulations in the SCFAs, bile acid and indole compounds, and NAFLD can be accurately diagnosed using the metabolites. L. lactis and P. pentosaceus ameliorate NAFLD progression by modulating gut metagenomic and metabolic environment, particularly tryptophan pathway, of the gut-liver axis.
Collapse
Affiliation(s)
- Jeong Seok Yu
- Department of Agricultural BiotechnologyCenter for Food and BioconvergenceResearch Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Gi Soo Youn
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Jieun Choi
- Department of Agricultural BiotechnologyCenter for Food and BioconvergenceResearch Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Chang‐Ho Kim
- Department of Agricultural BiotechnologyCenter for Food and BioconvergenceResearch Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | | | | | | | - Tae‐Sik Park
- Department of Life ScienceGachon UniversitySungnamRepublic of Korea
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research InstituteGyeonggi‐doRepublic of Korea
| | - Yeon Bee Kim
- Department of Agricultural BiotechnologyCenter for Food and BioconvergenceResearch Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
- Microbiology and Functionality Research GroupWorld Institute of KimchiGwangjuRepublic of Korea
| | - Seong Woon Roh
- Microbiology and Functionality Research GroupWorld Institute of KimchiGwangjuRepublic of Korea
| | - Byeong Hyun Min
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Hee Jin Park
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Na Young Lee
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Ye Rin Choi
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Hyeong Seob Kim
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Hotaik Sung
- School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Sang Hak Han
- Department of PathologyHallym University College of MedicineChuncheonRepublic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Do Yup Lee
- Department of Agricultural BiotechnologyCenter for Food and BioconvergenceResearch Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
35
|
Grgurevic I, Bozin T, Mikus M, Kukla M, O’Beirne J. Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease: From Epidemiology to Diagnostic Approach. Cancers (Basel) 2021; 13:5844. [PMID: 34830997 PMCID: PMC8616369 DOI: 10.3390/cancers13225844] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming the leading cause of liver morbidity worldwide and, as such, represents the pathogenic background for the increasing incidence of hepatocellular carcinoma (HCC). The annual incidence of NAFLD-related HCC is expected to increase by 45-130% by 2030. Diabetes mellitus is the most important risk factor for HCC development in NAFLD, with the risk further increased when associated with other metabolic traits, such as obesity, arterial hypertension and dyslipidemia. The highest risk of HCC exists in patients with advanced fibrosis or cirrhosis, although 20-50% of HCC cases arise in NAFLD patients with an absence of cirrhosis. This calls for further investigation of the pathogenic mechanisms that are involved in hepatocarcinogenesis, including genetics, metabolomics, the influence of the gut microbiota and immunological responses. Early identification of patients with or at risk of NAFLD is of utmost importance to improve outcomes. As NAFLD is highly prevalent in the community, the identification of cases should rely upon simple demographic and clinical characteristics. Once identified, these patients should then be evaluated for the presence of advanced fibrosis or cirrhosis and subsequently enter HCC surveillance programs if appropriate. A significant problem is the early recognition of non-cirrhotic NAFLD patients who will develop HCC, where new biomarkers and scores are potential solutions to tackle this issue.
Collapse
Affiliation(s)
- Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10 000 Zagreb, Croatia;
- Faculty of Pharmacy and Biochemistry, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Tonci Bozin
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10 000 Zagreb, Croatia;
| | - Mislav Mikus
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia;
| | - Michal Kukla
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagiellonian University Medical College, 30688 Cracow, Poland;
| | - James O’Beirne
- Department of Hepatology, University of the Sunshine Coast, Sunshine Coast 4556, Australia;
| |
Collapse
|
36
|
Singh D, Khan MA, Siddique HR. Therapeutic implications of probiotics in microbiota dysbiosis: A special reference to the liver and oral cancers. Life Sci 2021; 285:120008. [PMID: 34606851 DOI: 10.1016/j.lfs.2021.120008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
The microbiota plays an important role in maintaining the body's homeostasis. Imbalance in the microbiota is referred to as microbiota dysbiosis. Microbiota dysbiosis leads to pro-inflammatory immune response and progression of cancer- one of the leading causes of mortality globally. Accumulating evidence suggest the role of microbiota-dysbiosis in the liver and oral carcinogenesis and the therapeutic role of probiotic strains against these diseases. Probiotics are active microbial strains that have recently gained clinical importance due to their beneficial effects on the human body associated with the prevention and treatment of different diseases, including cancer. Multiple researchers have reported the use of probiotic strains in the modulation of microbiota and immune responses for cancer prevention and management. Clinical trials have also highlighted the efficacy of probiotic strains in reducing the side effects of microbiota dysbiosis related to cancer. In this context, the probiotic-mediated modulation to reverse microbiota dysbiosis is now considered one of the possible novel strategies for cancer prevention and management. In this article, we review the association between microbiota dysbiosis and liver/oral cancer. This review highlights the research advances on the anti-cancer activity of probiotic strains and their metabolites in the management of liver and oral cancers.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
37
|
De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective. Cells 2021; 10:2959. [PMID: 34831182 PMCID: PMC8616442 DOI: 10.3390/cells10112959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
| |
Collapse
|
38
|
Smorodin EP. Prospects and Challenges of the Study of Anti-Glycan Antibodies and Microbiota for the Monitoring of Gastrointestinal Cancer. Int J Mol Sci 2021; 22:ijms222111608. [PMID: 34769037 PMCID: PMC8584091 DOI: 10.3390/ijms222111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022] Open
Abstract
Over the past decades, a large amount of data has been accumulated in various subfields of glycobiology. However, much clinically relevant data and many tools are still not widely used in medicine. Synthetic glycoconjugates with the known structure of glycans are an accurate tool for the study of glycan-binding proteins. We used polyacrylamide glycoconjugates (PGs) including PGs with tumour-associated glycans (TAGs) in immunoassays to assess the prognostic potential of the serum level of anti-glycan antibodies (AG Abs) in gastrointestinal cancer patients and found an association of AG Abs with survival. The specificity of affinity-isolated AG Abs was investigated using synthetic and natural glycoconjugates. AG Abs showed mainly a low specificity to tumour-associated and tumour-derived mucins; therefore, the protective role of the examined circulating AG Abs against cancer remains a challenge. In this review, our findings are analysed and discussed in the context of the contribution of bacteria to the AG Abs stimulus and cancer progression. Examples of the influence of pathogenic bacteria colonising tumours on cancer progression and patient survival through mechanisms of interaction with tumours and dysregulated immune response are considered. The possibilities and problems of the integrative study of AG Abs and the microbiome using high-performance technologies are discussed.
Collapse
Affiliation(s)
- Eugeniy P Smorodin
- Department of Virology and Immunology, National Institute for Health Development, 11619 Tallinn, Estonia
| |
Collapse
|
39
|
Nishimura N, Kaji K, Kitagawa K, Sawada Y, Furukawa M, Ozutsumi T, Fujinaga Y, Tsuji Y, Takaya H, Kawaratani H, Moriya K, Namisaki T, Akahane T, Fukui H, Yoshiji H. Intestinal Permeability Is a Mechanical Rheostat in the Pathogenesis of Liver Cirrhosis. Int J Mol Sci 2021; 22:ijms22136921. [PMID: 34203178 PMCID: PMC8267717 DOI: 10.3390/ijms22136921] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested that an alteration in the gut microbiota and their products, particularly endotoxins derived from Gram-negative bacteria, may play a major role in the pathogenesis of liver diseases. Gut dysbiosis caused by a high-fat diet and alcohol consumption induces increased intestinal permeability, which means higher translocation of bacteria and their products and components, including endotoxins, the so-called "leaky gut". Clinical studies have found that plasma endotoxin levels are elevated in patients with chronic liver diseases, including alcoholic liver disease and nonalcoholic liver disease. A decrease in commensal nonpathogenic bacteria including Ruminococaceae and Lactobacillus and an overgrowth of pathogenic bacteria such as Bacteroidaceae and Enterobacteriaceae are observed in cirrhotic patients. The decreased diversity of the gut microbiota in cirrhotic patients before liver transplantation is also related to a higher incidence of post-transplant infections and cognitive impairment. The exposure to endotoxins activates macrophages via Toll-like receptor 4 (TLR4), leading to a greater production of proinflammatory cytokines and chemokines including tumor necrosis factor-alpha, interleukin (IL)-6, and IL-8, which play key roles in the progression of liver diseases. TLR4 is a major receptor activated by the binding of endotoxins in macrophages, and its downstream signal induces proinflammatory cytokines. The expression of TLR4 is also observed in nonimmune cells in the liver, such as hepatic stellate cells, which play a crucial role in the progression of liver fibrosis that develops into hepatocarcinogenesis, suggesting the importance of the interaction between endotoxemia and TLR4 signaling as a target for preventing liver disease progression. In this review, we summarize the findings for the role of gut-derived endotoxemia underlying the progression of liver pathogenesis.
Collapse
|
40
|
Jiang L, Schnabl B. Gut Microbiota in Liver Disease: What Do We Know and What Do We Not Know? Physiology (Bethesda) 2021; 35:261-274. [PMID: 32490750 DOI: 10.1152/physiol.00005.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gut and the liver have a bidirectional communication via the biliary system and the portal vein. The intestinal microbiota and microbial products play an important role for modulating liver diseases such as alcohol-associated liver disease, non-alcoholic fatty liver disease and steatohepatitis, and cholestatic liver diseases. Here, we review the role of the gut microbiota and its products for the pathogenesis and therapy of chronic liver diseases.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Medicine, University of California San Diego, La Jolla, California; and Department of Medicine, VA San Diego Healthcare System, San Diego, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California; and Department of Medicine, VA San Diego Healthcare System, San Diego, California
| |
Collapse
|
41
|
Qi R, Sun J, Qiu X, Zhang Y, Wang J, Wang Q, Huang J, Ge L, Liu Z. The intestinal microbiota contributes to the growth and physiological state of muscle tissue in piglets. Sci Rep 2021; 11:11237. [PMID: 34045661 PMCID: PMC8160342 DOI: 10.1038/s41598-021-90881-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Although the importance of the intestinal microbiota in host growth and health is well known, the relationship between microbiota colonization and muscle development is unclear. In this study, the direct causal effects of the colonization of gut microorganisms on the muscle tissue of piglets were investigated. The body weight and lean mass of germ-free (GF) piglets were approximately 40% lower than those of normal piglets. The deletion of the intestinal microbiota led to weakened muscle function and a reduction in myogenic regulatory proteins, such as MyoG and MyoD, in GF piglets. In addition, the blinded IGF1/AKT/mTOR pathway in GF piglets caused muscle atrophy and autophagy, which were characterized by the high expression of Murf-1 and KLF15. Gut microbiota introduced to GF piglets via fecal microbiota transplantation not only colonized the gut but also partially restored muscle growth and development. Furthermore, the proportion of slow-twitch muscle fibers was lower in the muscle of GF piglets, which was caused by the reduced short-chain fatty acid content in the circulation and impaired mitochondrial function in muscle. Collectively, these findings suggest that the growth, development and function of skeletal muscle in animals are mediated by the intestinal microbiota.
Collapse
Affiliation(s)
- Renli Qi
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China. .,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China.
| | - Jing Sun
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China
| | - Xiaoyu Qiu
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China
| | - Yong Zhang
- Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jing Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China.,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China. .,Chongqing Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing, 402460, China.
| | - Zuohua Liu
- Chongqing Academy of Animal Science, Rongchang, Chongqing, 402460, China. .,Key Laboratory of Pig Industry Sciences, Ministry of Agriculture and Rural Areas, Rongchang, Chongqing, 402460, China.
| |
Collapse
|
42
|
A novel therapeutic strategy for hepatocellular carcinoma: Immunomodulatory mechanisms of selenium and/or selenoproteins on a shift towards anti-cancer. Int Immunopharmacol 2021; 96:107790. [PMID: 34162153 DOI: 10.1016/j.intimp.2021.107790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
Selenium (Se) is an essential trace chemical element that is widely distributed worldwide. Se exerts its immunomodulatory and nutritional activities in the human body in the form of selenoproteins. Se has increasingly appeared as a potential trace element associated with many human diseases, including hepatocellular carcinoma (HCC). Recently, increasing evidence has suggested that Se and selenoproteins exert their immunomodulatory effects on HCC by regulating the molecules of oxidative stress, inflammation, immune response, cell proliferation and growth, angiogenesis, signaling pathways, apoptosis, and other processes in vitro cell studies and in vivo animal studies. Se concentrations are generally low in tissues of patients with HCC, such as blood, serum, scalp hair, and toenail. However, Se concentrations were higher in HCC patient tissues after Se supplementation than before supplementation. This review summarizes the significant relationship between Se and HCC, and details the role of Se as a novel immunomodulatory or immunotherapeutic approach against HCC.
Collapse
|
43
|
Gut Microbiota as Potential Biomarker and/or Therapeutic Target to Improve the Management of Cancer: Focus on Colibactin-Producing Escherichia coli in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13092215. [PMID: 34063108 PMCID: PMC8124679 DOI: 10.3390/cancers13092215] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Gut microbiota is emerging as new diagnostic and prognostic marker and/or therapeutic target to improve the management of cancer. This review aims to summarize microbial signatures that have been associated with digestive and other cancers. We report the clinical relevance of these microbial markers to predict the response to cancer therapy. Among these biomarkers, colibactin-producing E. coli are prevalent in the colonic mucosa of patients with colorectal cancer and they promote colorectal carcinogenesis in several pre-clinical models. Here we discuss the promising use of colibactin-producing E. coli as a new predictive factor and a therapeutic target in colon cancer management. Abstract The gut microbiota is crucial for physiological development and immunological homeostasis. Alterations of this microbial community called dysbiosis, have been associated with cancers such colorectal cancers (CRC). The pro-carcinogenic potential of this dysbiotic microbiota has been demonstrated in the colon. Recently the role of the microbiota in the efficacy of anti-tumor therapeutic strategies has been described in digestive cancers and in other cancers (e.g., melanoma and sarcoma). Different bacterial species seem to be implicated in these mechanisms: F. nucleatum, B. fragilis, and colibactin-associated E. coli (CoPEC). CoPEC bacteria are prevalent in the colonic mucosa of patients with CRC and they promote colorectal carcinogenesis in susceptible mouse models of CRC. In this review, we report preclinical and clinical data that suggest that CoPEC could be a new factor predictive of poor outcomes that could be used to improve cancer management. Moreover, we describe the possibility of using these bacteria as new therapeutic targets.
Collapse
|
44
|
Zhu R, Lang T, Yan W, Zhu X, Huang X, Yin Q, Li Y. Gut Microbiota: Influence on Carcinogenesis and Modulation Strategies by Drug Delivery Systems to Improve Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003542. [PMID: 34026439 PMCID: PMC8132165 DOI: 10.1002/advs.202003542] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/05/2021] [Indexed: 05/05/2023]
Abstract
Gut microbiota have close interactions with the host. It can affect cancer progression and the outcomes of cancer therapy, including chemotherapy, immunotherapy, and radiotherapy. Therefore, approaches toward the modulation of gut microbiota will enhance cancer prevention and treatment. Modern drug delivery systems (DDS) are emerging as rational and promising tools for microbiota intervention. These delivery systems have compensated for the obstacles associated with traditional treatments. In this review, the essential roles of gut microbiota in carcinogenesis, cancer progression, and various cancer therapies are first introduced. Next, advances in DDS that are aimed at enhancing the efficacy of cancer therapy by modulating or engineering gut microbiota are highlighted. Finally, the challenges and opportunities associated with the application of DDS targeting gut microbiota for cancer prevention and treatment are briefly discussed.
Collapse
Affiliation(s)
- Runqi Zhu
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianqun Lang
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
- Yantai Key Laboratory of Nanomedicine and Advanced PreparationsYantai Institute of Materia MedicaYantai264000China
| | - Wenlu Yan
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiao Zhu
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xin Huang
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Qi Yin
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
- Yantai Key Laboratory of Nanomedicine and Advanced PreparationsYantai Institute of Materia MedicaYantai264000China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
- Yantai Key Laboratory of Nanomedicine and Advanced PreparationsYantai Institute of Materia MedicaYantai264000China
- School of PharmacyYantai UniversityYantai264005China
| |
Collapse
|
45
|
Kim H, Lee DS, An TH, Park HJ, Kim WK, Bae KH, Oh KJ. Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. Int J Mol Sci 2021; 22:ijms22094495. [PMID: 33925827 PMCID: PMC8123490 DOI: 10.3390/ijms22094495] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Liver disease is the spectrum of liver damage ranging from simple steatosis called as nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC). Clinically, NAFLD and type 2 diabetes coexist. Type 2 diabetes contributes to biological processes driving the severity of NAFLD, the primary cause for development of chronic liver diseases. In the last 20 years, the rate of non-viral NAFLD/NASH-derived HCC has been increasing rapidly. As there are currently no suitable drugs for treatment of NAFLD and NASH, a class of thiazolidinediones (TZDs) drugs for the treatment of type 2 diabetes is sometimes used to improve liver failure despite the risk of side effects. Therefore, diagnosis, prevention, and treatment of the development and progression of NAFLD and NASH are important issues. In this review, we will discuss the pathogenesis of NAFLD/NASH and NAFLD/NASH-derived HCC and the current promising pharmacological therapies of NAFLD/NASH. Further, we will provide insights into "adipose-derived adipokines" and "liver-derived hepatokines" as diagnostic and therapeutic targets from NAFLD to HCC.
Collapse
Affiliation(s)
- Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Da Som Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| |
Collapse
|
46
|
Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K, Khani Ali Akbari S, Yousefimashouf R, Karampoor S. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother 2021; 139:111619. [PMID: 33906079 DOI: 10.1016/j.biopha.2021.111619] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Following cancer, cells in a particular tissue can no longer respond to the factors involved in controlling cell survival, differentiation, proliferation, and death. In recent years, it has been indicated that alterations in the gut microbiota components, intestinal epithelium, and host immune system are associated with cancer incidence. Also, it has been demonstrated that the short-chain fatty acids (SCFAs) generated by gut microbiota are vitally crucial in cell homeostasis as they contribute to the modulation of histone deacetylases (HDACs), resulting effected cell attachment, immune cell immigration, cytokine production, chemotaxis, and the programmed cell death. Therefore, the manipulation of SCFA levels in the intestinal tract by alterations in the microbiota structure can be potentially taken into consideration for cancer treatment/prevention. In the current study, we will explain the most recent findings on the detrimental or protective roles of SFCA (particularly butyrate, propionate, and acetate) in several cancers, including bladder, colon, breast, stomach, liver, lung, pancreas, and prostate cancers.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Azam Afaghi
- Department of Biology, Sofian Branch, Islamic Azad University, Sofian, Iran
| | - Sajad Babakhani
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Reza Sohrabi
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiandokht Babolhavaeji
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shabnam Khani Ali Akbari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Intestinal Microbiota and Liver Diseases: Insights into Therapeutic Use of Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6682581. [PMID: 33976705 PMCID: PMC8087485 DOI: 10.1155/2021/6682581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 04/10/2021] [Indexed: 11/18/2022]
Abstract
Liver disease is a leading cause of global morbidity and mortality, for which inflammation, alcohol use, lipid metabolic disorders, disturbance to bile acid metabolism, and endotoxins are common risk factors. Traditional Chinese Medicine (TCM) with its "holistic approach" is widely used throughout the world as a complementary, alternative therapy, due to its clinical efficacy and reduced side effects compared with conventional medicines. However, due to a lack of reliable scientific evidence, the role of TCM in the prevention and treatment of liver disease remains unclear. Over recent years, with the rapid development of high-throughput sequencing, 16S rRNA detection, and bioinformatics methodology, it has been gradually recognized that the regulation of intestinal microbiota by TCM can play a substantial role in the treatment of liver disease. To better understand how TCM regulates the intestinal microbiota and suppresses liver disease, we have reviewed and analyzed the results of existing studies and summarized the relationship and risk factors between intestinal microbiota and liver disease. The present review summarizes the related mechanisms by which TCM affects the composition and metabolites of the intestinal microbiome.
Collapse
|
48
|
Mechanisms by Which Probiotic Bacteria Attenuate the Risk of Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22052606. [PMID: 33807605 PMCID: PMC7961993 DOI: 10.3390/ijms22052606] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and the second leading cause of cancer-related deaths worldwide. Chronic infections with hepatitis B virus (HBV) and hepatitis C virus (HCV), alcoholic liver disease (ALD), and non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) are the major extrinsic risk factors of HCC development. Genetic background is pivotal in HCC pathogenesis, and both germline mutations and single nucleotide polymorphism (SNP) are intrinsic risk factors of HCC. These HCC risk factors predispose to hepatic injury and subsequent activation of fibrogenesis that progresses into cirrhosis and HCC. Probiotic bacteria can mitigate HCC risk by modulating host gut microbiota (GM) to promote growth of beneficial microbes and inhibit HCC-associated dysbiosis, thus preventing pathogen-associated molecular patterns (PAMPs)-mediated hepatic inflammation. Probiotics have antiviral activities against HBV and HCV infections, ameliorate obesity and risk of NAFLD/NASH, and their antioxidant, anti-proliferative, anti-angiogenic, and anti-metastatic effects can prevent the HCC pathogenesis. Probiotics also upregulate the expression of tumor suppressor genes and downregulate oncogene expression. Moreover, metabolites generated by probiotics through degradation of dietary phytochemicals may mitigate the risk of HCC development. These multiple anticancer mechanisms illustrate the potential of probiotics as an adjuvant strategy for HCC risk management and treatment.
Collapse
|
49
|
Abstract
A type of evolutionarily conserved, noncoding, small, endogenous, single-stranded RNA, miRNAs are widely distributed in eukaryotes, where they participate in various biological processes as critical regulatory molecules. miR-1299 has mainly been investigated in cancers. miR-1299 is a tumor suppressor that regulates the expression of its target genes, activating or inhibiting the transcription of genes regulating biological activities including cell proliferation, migration, survival and programmed cell death. miR-1299 has become a hotspot in research of disease mechanisms and biomarkers; elucidation of the regulatory roles of miR-1299 in tumorigenesis, proliferation, apoptosis, invasion, migration and angiogenesis may provide a new perspective for understanding its biological functions as a tumor suppressor. As key regulatory molecules, microRNAs participate in various biological processes and have become a widespread research focus. This article discusses how the microRNA miR-1299 plays a role as a tumor suppressor and participates in the regulation of tumor pathogenesis. We provide an overview of the role of miR-1299 in tumor diseases and discuss the pathogenesis and regulation mechanisms of miR-1299 in different specific cancers.
Collapse
Affiliation(s)
- Deng Kaiyuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| | - Huang Lijuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| | - Sun Xueyuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| | - Zang Yunhui
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| |
Collapse
|
50
|
Leng L, Ma J, Lv L, Gao D, Li M, Wang Y, Zhu Y. Serum proteome profiling provides a deep understanding of the 'gut-liver axis' in relation to liver injury and regeneration. Acta Biochim Biophys Sin (Shanghai) 2021; 53:372-380. [PMID: 33511977 DOI: 10.1093/abbs/gmab001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 12/25/2022] Open
Abstract
The gut-liver axis is one of the major contributors to the transport of products from the intestine or intestinal microbes with the progression of liver regeneration. However, the influence of proteins from the hepatic portal vein (HPV), the bridge of enterohepatic circulation, on liver regeneration is unclear. For first time, we applied a quantitative proteomics approach to characterize the molecular pathology of the HPV sera of mice with antibiotic-induced intestinal flora disorder during acute liver injury. The biological processes of lipid metabolism and wound healing were enriched in the HPV of mice with intestinal flora disorder, whereas energy metabolism, liver regeneration, and cytoskeletal processes were downregulated. Moreover, 95 and 35 proteins potentially promoting or inhibiting liver regeneration, respectively, were identified in HPV serum. Our findings will be beneficial to liver donors during liver transplantation.
Collapse
Affiliation(s)
- Ling Leng
- Stem cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing 102206, China
| | - Luye Lv
- Department of Biological Defense, Institute of NBC Defense, Beijing 102205, China
| | - Dunqin Gao
- Stem cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mansheng Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing 102206, China
| | - Yujie Wang
- Stem cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing 102206, China
- Basic Medical School, Anhui Medical University, Hefei 230032, China
| |
Collapse
|