1
|
Seidler Y, Rimbach G, Lüersen K, Vinderola G, Ipharraguerre IR. The postbiotic potential of Aspergillus oryzae - a narrative review. Front Microbiol 2024; 15:1452725. [PMID: 39507340 PMCID: PMC11538067 DOI: 10.3389/fmicb.2024.1452725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The filamentous fungus Aspergillus oryzae has a long tradition in East Asian food processing. It is therefore not surprising that in recent years fermentation products of A. oryzae have attracted attention in the emerging field of postbiotics. This review aims to provide a comprehensive summary of the potential postbiotic effects of fermentation products from A. oryzae, by discussing possible mechanisms of action against the background of the molecular composition determined so far. In particular, cell wall constituents, enzymes, extracellular polymeric substances, and various metabolites found in A. oryzae fermentation preparations are described in detail. With reference to the generally assumed key targets of postbiotics, their putative beneficial bioactivities in modulating the microbiota, improving epithelial barrier function, influencing immune responses, metabolic reactions and signaling through the nervous system are assessed. Drawing on existing literature and case studies, we highlight A. oryzae as a promising source of postbiotics, particularly in the context of animal health and nutrition. Challenges and opportunities in quality control are also addressed, with a focus on the necessity for standardized methods to fully harness the potential of fungal-based postbiotics. Overall, this article sheds light on the emerging field of A. oryzae-derived postbiotics and emphasizes the need for further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Yvonne Seidler
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| | - Ignacio R. Ipharraguerre
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| |
Collapse
|
2
|
Crosbie M, Pezzali JG, Hancock‐Monroe L, Buff PR, Shoveller AK. Extruded canine diets containing primarily peas in contrast to those containing lamb and chicken meal are at higher risk of mold and mycotoxin contamination when treated similarly: An observational study. Food Sci Nutr 2024; 12:6411-6424. [PMID: 39554369 PMCID: PMC11561854 DOI: 10.1002/fsn3.4277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 11/19/2024] Open
Abstract
Three extruded dog diets were created for a nutritional study with different primary protein sources (BAS: lamb meal (LM) and deboned lamb (DL); CHK: chicken meal, LM, and DL; PEA: dried ground pea, LM, and DL). All diets were processed using the same single-screw extruder, shipped from the processing facility on the same day, and transported under the same conditions in January 2021. After 8 months of storage in a temperature and humidity-controlled room in September 2021, only the PEA diet was molded upon inspection. Mold and mycotoxin analysis of all diets was conducted in both September 2021 and at expiry in January 2022, which confirmed mold and mycotoxin contamination to some degree in all diets and most pronounced in the PEA diet across both timepoints. Nutrient analysis of all diets was conducted at production and 2 months post-expiry in March 2022. As expected, fatty acid and vitamin contents of all diets decreased between sampling timepoints, and amino acid contents generally remained stable. Methionine decreased by 14% in CHK, cystine decreased by 15% and 20% in CHK and PEA, respectively, tyrosine decreased by 30%, 25%, and 27% across BAS, CHK, and PEA, respectively, and taurine decreased by 50%, 42%, and 55% across BAS, CHK, and PEA, respectively. Inaccurate measurement of the PEA diet moisture content post-production likely led to mold development which may also negatively impact the availability of nutrients and could put dogs at risk for mycotoxicosis and nutrient deficiencies if not closely monitored, but controlled studies are required.
Collapse
Affiliation(s)
- Michelina Crosbie
- Department of Animal BiosciencesUniversity of GuelphGuelphOntarioCanada
| | - Julia G. Pezzali
- Department of Animal BiosciencesUniversity of GuelphGuelphOntarioCanada
- Present address:
Department of Grain Science and IndustryKanas State UniversityManhattanKanasUSA
| | - Leslie Hancock‐Monroe
- The J.M. Smucker Co.OrrvilleOhioUSA
- Present address:
Hill's Pet Nutrition, Inc.TopekaKanasUSA
| | - Preston R. Buff
- The J.M. Smucker Co.OrrvilleOhioUSA
- Present address:
Post Holdings, Inc.St. LouisMissouriUSA
| | - Anna K. Shoveller
- Department of Animal BiosciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
3
|
Liu J, Zhang H, Zhang L, Li T, Liu N, Liu Q. Effect of various concentrations of common organic solvents on the growth and proliferation ability of Candida glabrata and their permissible limits for addition in drug susceptibility testing. PeerJ 2023; 11:e16444. [PMID: 38025727 PMCID: PMC10668856 DOI: 10.7717/peerj.16444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Objectives Dimethyl sulfoxide (DMSO), acetone, ethanol, and methanol are organic solvents commonly used for dissolving drugs in antimicrobial susceptibility testing. However, these solvents have certain antimicrobial activity. Currently, standardized criteria for the selection and dosage of drug solvents in drug susceptibility testing research are lacking. The study aims to provide experimental evidence for the selection and addition limit of drug solvents for the in vitro antifungal susceptibility test of Candida glabrata (C. glabrata). Methods According to the recommendation of the Clinical and Laboratory Standards Institute (CLSI) M27-A3, a 0.5 McFarland C. glabrata suspension was prepared and then diluted 1:1,000. Next, a gradient dilution method was used to prepare 20%, 10%, 5%, and 2.5% DMSO/acetone/ethanol/methanol. The mixture was plated onto a 96-well plate and incubated at a constant temperature of 35 °C for 48 h. The inhibitory effects of DMSO, acetone, ethanol, and methanol on C. glabrata growth and proliferation were analyzed by measuring optical density values at 600 nm (OD600 values). Results After 48 h incubation, the OD600 values of C. glabrata decreased to different extents in the presence of the four common organic solvents. The decrease in the OD600 values was greater with increasing concentrations within the experimental concentration range. When DMSO and acetone concentrations were higher than 2.5% (containing 2.5%) and methanol and ethanol concentrations were higher than 5.0% (containing 5.0%), the differences were statistically significant compared with the growth control wells without any organic solvent (P < 0.05). Conclusion All four organic solvents could inhibit C. glabrata growth and proliferation. When used as solvents for drug sensitivity testing in C. glabrata, the concentrations of DMSO, acetone, ethanol, and methanol should be below 2.5%, 2.5%, 5%, and 5%, respectively.
Collapse
Affiliation(s)
- Juan Liu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Disease, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongxin Zhang
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lifang Zhang
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Disease, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ting Li
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Disease, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Na Liu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing Liu
- Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Disease, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Liu S, Zhang ZF, Mao J, Zhou Z, Zhang J, Shen C, Wang S, Marco ML, Mao J. Integrated meta-omics approaches reveal Saccharopolyspora as the core functional genus in huangjiu fermentations. NPJ Biofilms Microbiomes 2023; 9:65. [PMID: 37726290 PMCID: PMC10509236 DOI: 10.1038/s41522-023-00432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
Identification of the core functional microorganisms in food fermentations is necessary to understand the ecological and functional processes for making those foods. Wheat qu, which provides liquefaction and saccharifying power, and affects the flavor quality, is a key ingredient in ancient alcoholic huangjiu fermentation, while core microbiota of them still remains indistinct. In this study, metagenomics, metabolomics, microbial isolation and co-fermentation were used to investigate huangjiu. Although Aspergillus is usually regarded as core microorganism in wheat qu to initiate huangjiu fermentations, our metagenomic analysis showed that bacteria Saccharopolyspora are predominant in wheat qu and responsible for breakdown of starch and cellulose. Metabolic network and correlation analysis showed that Saccharopolyspora rectivirgula, Saccharopolyspora erythraea, and Saccharopolyspora hirsuta made the greatest contributions to huangjiu's metabolites, consisting of alcohols (phenylethanol, isoamylol and isobutanol), esters, amino acids (Pro, Arg, Glu and Ala) and organic acids (lactate, tartrate, acetate and citrate). S. hirsuta J2 isolated from wheat qu had the highest amylase, glucoamylase and protease activities. Co-fermentations of S. hirsuta J2 with S. cerevisiae HJ resulted in a higher fermentation rate and alcohol content, and huangjiu flavors were more similar to that of traditional huangjiu compared to co-fermentations of Aspergillus or Lactiplantibacillus with S. cerevisiae HJ. Genome of S. hirsuta J2 contained genes encoding biogenic amine degradation enzymes. By S. hirsuta J2 inoculation, biogenic amine content was reduced by 45%, 43% and 62% in huangjiu, sausage and soy sauce, respectively. These findings show the utility of Saccharopolyspora as a key functional organism in fermented food products.
Collapse
Affiliation(s)
- Shuangping Liu
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, Zhejiang, 312000, China
| | - Zhi-Feng Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jieqi Mao
- Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542, Singapore, Singapore
| | - Zhilei Zhou
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, Zhejiang, 312000, China
| | - Jing Zhang
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Songtao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, CA, USA.
| | - Jian Mao
- National Engineering Laboratory for Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
5
|
Zhang L, Cui H, Liu M, Wang W, Li X, Huang H. The role of multi-low molecular weight organic acids on phenanthrene biodegradation: Insight from cellular characteristics and proteomics. CHEMOSPHERE 2023; 326:138406. [PMID: 36925006 DOI: 10.1016/j.chemosphere.2023.138406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/15/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and ubiquitous pollutants that need to be solved. The low-molecular-weight organic acid (LMWOA) holds the promise to accelerate the capacity of microbes to degrade PAHs. However, the degradation mechanism(s) with multi-LMWOAs has not been understood yet, which is closer to the complex environmental biodegradation in nature. Here, we demonstrated a comprehensive cellular and proteomic response pattern by investigating the relationship between a model PAH degrading strain, B. subtilis ZL09-26, and the mixture LMWOAs (citric acid, glutaric acid, and oxalic acid). As a result, multi-LMWOAs introduced a highly enhanced phenanthrene (PHE) degradation efficiency with up to 3.1-fold improvement at 72 h, which is accompanied by the enhancement of strain growth and activity, but the releasement of membrane damages and oxidative stresses. Moreover, a detailed proteomic analysis revealed that the synergistic perturbation of various metabolic pathways jointly governed the change of cellular behaviors and improved PHE degradation in a network manner. The obtained knowledge provides a foundation for designing the artificial LMWOAs mixtures and guides the rational remediation of contaminated soils using bio-stimulation techniques.
Collapse
Affiliation(s)
- Lei Zhang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China; College of Food Science and Engineering, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Haiyang Cui
- RWTH Aachen University, Templergraben 55, Aachen, 52062, Germany
| | - Mina Liu
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, China
| | - Weidong Wang
- Research Institute of Petroleum Engineering and Technology, Shengli Oilfield Company, Sinopec, Dongying, 257067, China
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, China.
| | - He Huang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Kubisch C, Kövilein A, Aliyu H, Ochsenreither K. RNA-Seq Based Transcriptome Analysis of Aspergillus oryzae DSM 1863 Grown on Glucose, Acetate and an Aqueous Condensate from the Fast Pyrolysis of Wheat Straw. J Fungi (Basel) 2022; 8:765. [PMID: 35893132 PMCID: PMC9394295 DOI: 10.3390/jof8080765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Due to its acetate content, the pyrolytic aqueous condensate (PAC) formed during the fast pyrolysis of wheat straw could provide an inexpensive substrate for microbial fermentation. However, PAC also contains several inhibitors that make its detoxification inevitable. In our study, we examined the transcriptional response of Aspergillus oryzae to cultivation on 20% detoxified PAC, pure acetate and glucose using RNA-seq analysis. Functional enrichment analysis of 3463 significantly differentially expressed (log2FC >2 & FDR < 0.05) genes revealed similar metabolic tendencies for both acetate and PAC, as upregulated genes in these cultures were mainly associated with ribosomes and RNA processing, whereas transmembrane transport was downregulated. Unsurprisingly, metabolic pathway analysis revealed that glycolysis/gluconeogenesis and starch and sucrose metabolism were upregulated for glucose, whereas glyoxylate and the tricarboxylic acid (TCA) cycle were important carbon utilization pathways for acetate and PAC, respectively. Moreover, genes involved in the biosynthesis of various amino acids such as arginine, serine, cysteine and tryptophan showed higher expression in the acetate-containing cultures. Direct comparison of the transcriptome profiles of acetate and PAC revealed that pyruvate metabolism was the only significantly different metabolic pathway and was overexpressed in the PAC cultures. Upregulated genes included those for methylglyoxal degradation and alcohol dehydrogenases, which thus represent potential targets for the further improvement of fungal PAC tolerance.
Collapse
Affiliation(s)
- Christin Kubisch
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (A.K.); (H.A.); (K.O.)
| | | | | | | |
Collapse
|
7
|
Cheng Z, Shi C, Gao X, Wang X, Kan G. Biochemical and Metabolomic Responses of Antarctic Bacterium Planococcus sp. O5 Induced by Copper Ion. TOXICS 2022; 10:toxics10060302. [PMID: 35736910 PMCID: PMC9230899 DOI: 10.3390/toxics10060302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023]
Abstract
Heavy metal pollution in the Antarctic has gone beyond our imagination. Copper toxicity is a selective pressure on Planococcus sp. O5. We observed relatively broad tolerance in the polar bacterium. The heavy metal resistance pattern is Pb2+ > Cu2+ > Cd2+ > Hg2+ > Zn2+. In the study, we combined biochemical and metabolomics approaches to investigate the Cu2+ adaptation mechanisms of the Antarctic bacterium. Biochemical analysis revealed that copper treatment elevated the activity of antioxidants and enzymes, maintaining the bacterial redox state balance and normal cell division and growth. Metabolomics analysis demonstrated that fatty acids, amino acids, and carbohydrates played dominant roles in copper stress adaptation. The findings suggested that the adaptive mechanisms of strain O5 to copper stress included protein synthesis and repair, accumulation of organic permeable substances, up-regulation of energy metabolism, and the formation of fatty acids.
Collapse
|
8
|
Zhang L, Wang M, Cui H, Qiao J, Guo D, Wang B, Li X, Huang H. How humic acid and Tween80 improve the phenanthrene biodegradation efficiency: Insight from cellular characteristics and quantitative proteomics. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126685. [PMID: 34332485 DOI: 10.1016/j.jhazmat.2021.126685] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic and recalcitrant pollutants, with an urgent need for bioremediation. Systematic biodegradation studies show that surfactant-mediated bioremediation is still poorly understood. Here, we investigated a comprehensive cellular response pattern of the PAH degrading strain B. subtilis ZL09-26 to (non-)green surfactants at the cellular and proteomic levels. Eight characteristic cellular factor investigations and detailed quantitative proteomics analyses were performed to understand the highly enhanced phenanthrene (PHE) degradation efficiency (2.8- to 3-fold improvement) of ZL09-26 by humic acid (HA) or Tween80. The commonly upregulated pathway and proteins (Arginine generation, LacI-family transcriptional regulator, and Lactate dehydrogenase) and various metabolic pathways (such as phenanthrene degradation upstream pathway and central carbon metabolism) jointly govern the change of cellular behaviors and improvement of PHE transport, emulsification, and degradation in a network manner. The obtained molecular knowledge empowers engineers to expand the application of surfactants in the biodegradation of PAHs and other pollutants.
Collapse
Affiliation(s)
- Lei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China; College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Minghui Wang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany; DWI-Leibniz Institut für Inateraktive Materialien, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Jie Qiao
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Dongsheng Guo
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Biao Wang
- Petroleum Engineering Technology Research Institute of Jiangsu Oilfield Company, SINOPEC, Yangzhou 225009, People's Republic of China; Research Center of Oil and Gas Microbial Engineering of Jiangsu, Yangzhou 225009, People's Republic of China
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| | - He Huang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
9
|
Wu C, Hong B, Jiang S, Luo X, Lin H, Zhou Y, Wu J, Yue X, Shi H, Wu R. Recent advances on essential fatty acid biosynthesis and production: Clarifying the roles of Δ12/Δ15 fatty acid desaturase. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Lv G, Xu Y, Tu Y, Cheng X, Zeng B, Huang J, He B. Effects of Nitrogen and Phosphorus Limitation on Fatty Acid Contents in Aspergillus oryzae. Front Microbiol 2021; 12:739569. [PMID: 34745041 PMCID: PMC8566876 DOI: 10.3389/fmicb.2021.739569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aspergillus oryzae, commonly known as koji mold, has been widely used for the large-scale production of food products (sake, makgeolli, and soy sauce) and can accumulate a high level of lipids. In the present study, we showed the dynamic changes in A. oryzae mycelium growth and conidia formation under nitrogen and phosphorus nutrient stress. The fatty acid profile of A. oryzae was determined and the content of unsaturated fatty acid was found increased under nitrogen and phosphorus limitation. Oleic acid (C18:1), linoleic acid (C18:2), and γ-linolenic acid (C18:3) production were increased on five nitrogen and phosphorus limitation media, especially on nitrogen deep limitation and phosphorus limitation group, showing a 1. 2-, 1. 6-, and 2.4-fold increment, respectively, compared with the control. Transcriptomic analysis showed the expression profile of genes related to nitrogen metabolism, citrate cycle, and linoleic acid synthesis, resulting in the accumulation of unsaturated fatty acid. qRT-PCR results further confirmed the reliability and availability of the differentially expressed genes obtained from the transcriptome analysis. Our study provides a global transcriptome characterization of the nitrogen and phosphorus nutrient stress adaptation process in A. oryzae. It also revealed that the molecular mechanisms of A. oryzae respond to nitrogen and phosphorus stress. Our finding facilitates the construction of industrial strains with a nutrient-limited tolerance.
Collapse
Affiliation(s)
- Gongbo Lv
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Ying Xu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yayi Tu
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Xiaojie Cheng
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jianhua Huang
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin He
- Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-Vitro Diagnostic Reagents and Devices of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
11
|
Perdigão Cota de Almeida S, Rozas EE, Oller do Nascimento CA, Dias M, Mendes MA. Metabolomic and secretomic approach to the resistance features of the fungus Aspergillus niger IOC 4687 to copper stress. Metallomics 2020; 13:6050762. [PMID: 33570139 DOI: 10.1093/mtomcs/mfaa010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 11/14/2022]
Abstract
Metabolomic and secretomic analyses of Aspergillus niger IOC 4687 indicated the features of resistance of this strain to copper stress. To investigate the metabolites produced under oxidative stress conditions, gas chromatography-mass spectrometry analysis was performed. The secretome principal component analysis results showed that mannitol could be the main metabolite responsible for conferring resistance to the fungus, and gluconic acid is the possible cause of copper desorption because of its chelating ability. The meta-analysis of the metabolome of A. niger IOC 4687 indicated that a low concentration of sorbitol and ribonolactone during growth may be an indicator of oxidative stress.
Collapse
Affiliation(s)
- Silas Perdigão Cota de Almeida
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, Bloco B 3 andar, 05508-080 São Paulo-SP, Brasil
| | - Enrique Eduardo Rozas
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, Bloco B 3 andar, 05508-080 São Paulo-SP, Brasil
| | - Cláudio Augusto Oller do Nascimento
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, Bloco B 3 andar, 05508-080 São Paulo-SP, Brasil
| | - Meriellen Dias
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, Bloco B 3 andar, 05508-080 São Paulo-SP, Brasil
| | - Maria Anita Mendes
- Dempster MS Lab, Chemical Engineering Department of Polytechnic School of University of São Paulo, Rua do Lago 250, Bloco B 3 andar, 05508-080 São Paulo-SP, Brasil
| |
Collapse
|
12
|
Development of a Size-Exclusion/Ion-Exclusion/Reversed-Phase Separation Method for the Simultaneous Determination of Inorganic and Organic Acids, Sugars, and Ethanol During Multiple Parallel Fermentation of Rice Wine. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Ren Y, Jin J, Zheng M, Yang Q, Xing F. Ethanol Inhibits Aflatoxin B 1 Biosynthesis in Aspergillus flavus by Up-Regulating Oxidative Stress-Related Genes. Front Microbiol 2020; 10:2946. [PMID: 32010073 PMCID: PMC6978751 DOI: 10.3389/fmicb.2019.02946] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023] Open
Abstract
As the most carcinogenic, toxic, and economically costly mycotoxins, aflatoxin B1 (AFB1) is primarily biosynthesized by Aspergillus flavus and Aspergillus parasiticus. Aflatoxin biosynthesis is related to oxidative stress and functions as a second line of defense from excessive reactive oxygen species. Here, we find that ethanol can inhibit fungal growth and AFB1 production by A. flavus in a dose-dependent manner. Then, the ethanol’s molecular mechanism of action on AFB1 biosynthesis was revealed using a comparative transcriptomic analysis. RNA-Seq data indicated that all the genes except for aflC in the aflatoxin gene cluster were down-regulated by 3.5% ethanol. The drastic repression of aflatoxin structural genes including the complete inhibition of aflK and aflLa may be correlated with the down-regulation of the transcription regulator genes aflR and aflS in the cluster. This may be due to the repression of several global regulator genes and the subsequent overexpression of some oxidative stress-related genes. The suppression of several key aflatoxin genes including aflR, aflD, aflM, and aflP may also be associated with the decreased expression of the global regulator gene veA. In particular, ethanol exposure caused the decreased expression of stress response transcription factor srrA and the overexpression of bZIP transcription factor ap-1, C2H2 transcription factors msnA and mtfA, together with the enhanced levels of anti-oxidant enzymatic genes including Cat, Cat1, Cat2, CatA, and Cu, Zn superoxide dismutase gene sod1. Taken together, these RNA-Seq data strongly suggest that ethanol inhibits AFB1 biosynthesis by A. flavus via enhancing fungal oxidative stress response. In conclusion, this study served to reveal the anti-aflatoxigenic mechanisms of ethanol in A. flavus and to provide solid evidence for its use in controlling AFB1 contamination.
Collapse
Affiliation(s)
- Yaoyao Ren
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jing Jin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mumin Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Fuguo Xing
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China.,Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Effects on Gene Transcription Profile and Fatty Acid Composition by Genetic Modification of Mevalonate Diphosphate Decarboxylase MVD/Erg19 in Aspergillus Oryzae. Microorganisms 2019; 7:microorganisms7090342. [PMID: 31514444 PMCID: PMC6780523 DOI: 10.3390/microorganisms7090342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 12/30/2022] Open
Abstract
Mevalonate diphosphate decarboxylase MVD/Erg19 is required for ergosterol biosynthesis, growth, sporulation, and stress tolerance in Aspergillus oryzae. In this study, RNA-seq was used to analyze the gene transcription profile in AoErg19 overexpression (OE) and RNAi strains. There were 256 and 74 differentially expressed genes (DEGs) in AoErg19 OE and RNAi strains, respectively, compared with the control strain (CK). The most common DEGs were transport- and metabolism-related genes. Only 22 DEGs were obtained that were regulated in both OE and RNAi strains. The transcriptomic comparison between CK and AoErg19 overexpression strain (CK vs. OE), and between CK and AoErg19 RNAi strain (CK vs. RNAi) revealed that the greatest difference existed in the number of genes belonging to the cytochrome P450 family; 12 were found in CK vs. OE, whereas 1 was found in CK vs. RNAi. The expression patterns of lipid biosynthesis and metabolism related genes were altered in OE and RNAi strains, either by gene induction or suppression. Moreover, the total fatty acid content in the RNAi strain was 12.1% greater than the control strain, but no difference in total acid content was found between the overexpression strain and the control strain. Therefore, this study highlights the gene expression regulation within mevalonate (MVA), ergosterol biosynthesis, and fatty acid biosynthesis pathways.
Collapse
|
15
|
Ren Y, Jin J, Zheng M, Yang Q, Xing F. Ethanol Inhibits Aflatoxin B 1 Biosynthesis in Aspergillus flavus by Up-Regulating Oxidative Stress-Related Genes. Front Microbiol 2019. [PMID: 32010073 DOI: 10.3389/fmicb.2019.02946/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
As the most carcinogenic, toxic, and economically costly mycotoxins, aflatoxin B1 (AFB1) is primarily biosynthesized by Aspergillus flavus and Aspergillus parasiticus. Aflatoxin biosynthesis is related to oxidative stress and functions as a second line of defense from excessive reactive oxygen species. Here, we find that ethanol can inhibit fungal growth and AFB1 production by A. flavus in a dose-dependent manner. Then, the ethanol's molecular mechanism of action on AFB1 biosynthesis was revealed using a comparative transcriptomic analysis. RNA-Seq data indicated that all the genes except for aflC in the aflatoxin gene cluster were down-regulated by 3.5% ethanol. The drastic repression of aflatoxin structural genes including the complete inhibition of aflK and aflLa may be correlated with the down-regulation of the transcription regulator genes aflR and aflS in the cluster. This may be due to the repression of several global regulator genes and the subsequent overexpression of some oxidative stress-related genes. The suppression of several key aflatoxin genes including aflR, aflD, aflM, and aflP may also be associated with the decreased expression of the global regulator gene veA. In particular, ethanol exposure caused the decreased expression of stress response transcription factor srrA and the overexpression of bZIP transcription factor ap-1, C2H2 transcription factors msnA and mtfA, together with the enhanced levels of anti-oxidant enzymatic genes including Cat, Cat1, Cat2, CatA, and Cu, Zn superoxide dismutase gene sod1. Taken together, these RNA-Seq data strongly suggest that ethanol inhibits AFB1 biosynthesis by A. flavus via enhancing fungal oxidative stress response. In conclusion, this study served to reveal the anti-aflatoxigenic mechanisms of ethanol in A. flavus and to provide solid evidence for its use in controlling AFB1 contamination.
Collapse
Affiliation(s)
- Yaoyao Ren
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jing Jin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mumin Zheng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Fuguo Xing
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|