1
|
Liu C, An C, Zhang J, Liu Y, Zhang Q, Ding H, Ma S, Xue W. Evaluation of Safety and Probiotic Properties of Weissella spp. in Fermented Vegetables From Xi'an, Shaanxi, China. Food Sci Nutr 2025; 13:e4592. [PMID: 39803218 PMCID: PMC11717038 DOI: 10.1002/fsn3.4592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 01/16/2025] Open
Abstract
The genus Weissella, commonly found in fermented foods, is a significant group of lactic acid bacteria (LAB) with potential probiotic properties. Several Weissella strains have been proposed as probiotics due to their biotechnological capabilities. However, a few strains may exhibit opportunistic pathogenic behavior, which restricts the widespread use of all Weissella strains in food applications. This study sought to expand our understanding of the biotechnological capabilities of Weissella spp. by examining the safety and functional characteristics of strains isolated from spontaneous fermentation. In this investigation, nine Weissella strains were evaluated for their safety and probiotic potential. The safety assessment revealed that the antibiotic resistance profiles of strains 16-2, 38-3, 69-3, 91-3, 91-5, 104-4, and 106-5 were comparable or superior to the reference strain LGG. Hemolytic activity and ammonia production were also evaluated, but no positive results were observed. Further probiotic experiments demonstrated that strain 91-5 exhibited superior performance in several areas, including survival rates in simulated gastrointestinal fluids, cell surface properties (hydrophobicity and adhesion to Caco-2 cells), ABTS+ scavenging ability, antimicrobial activity, and cholesterol assimilation in vitro. Additionally, strain 104-4 produced an exopolysaccharide (EPS) yield of 35.11 g/L after 48 h of culture in MRS-sucrose (60 g/L) medium, surpassing most previously reported values. These findings suggest that strains 91-5 and 104-4 show promise as potential probiotic candidates for the development of new functional food supplements. Furthermore, this research expands the theoretical basis for considering Weissella strains as novel probiotics.
Collapse
Affiliation(s)
- Chen Liu
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| | - Chao An
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| | - Jingjing Zhang
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| | - Yao Liu
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| | - Qiwen Zhang
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| | - Hao Ding
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| | - Saijian Ma
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| | - Wenjiao Xue
- Shaanxi Institute of MicrobiologyXi'anChina
- Shaanxi Key Laboratory of Qinling Ecological SecurityShaanxi Academy of SciencesXi'anChina
| |
Collapse
|
2
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
3
|
Russo N, Di Rosa AR, Pino A, Mazzeo G, Liotta L, Caggia C, Randazzo CL. Assessment of sensory properties and in vitro antimicrobial activity of monofloral Sicilian honey. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Zareie Z, Moayedi A, Garavand F, Tabar-Heydar K, Khomeiri M, Maghsoudlou Y. Probiotic Properties, Safety Assessment, and Aroma-Generating Attributes of Some Lactic Acid Bacteria Isolated from Iranian Traditional Cheese. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Artisanal cheeses are known as the source of beneficial lactic acid bacteria (LAB). Therefore, this study aimed to isolate and characterize LAB with different proteolytic activities from Iranian artisanal white cheeses. The isolates were classified into low, medium, and high proteolytic activity clusters via K-means clustering and identified as Lactiplantibacillus (Lpb.) pentosus L11, Lpb. plantarum L33, and Enterococcus faecium L13, respectively. Some safety tests (such as resistance to antibiotics, hemolytic activity, and biogenic amine production), probiotic properties (including cell surface hydrophobicity, auto/co-aggregation, and antibacterial activity), and production of volatile compounds were evaluated. These were non-hemolytic and non-biogenic amine producers, and showed no irregular antibiotic resistance. Lpb. plantarum L33 had the highest hydrophobicity (30.55%) and auto-aggregation (49.56%), and the highest co-aggregation was observed for Lpb. pentosus L11 with Staphylococcus aureus (61.51%). The isolates also showed a remarkable antibacterial effect against pathogenic bacteria. Moreover, Lpb. pentosus L11 and Lpb. plantarum L33 with low and medium proteolytic activity produced a wider range of volatile compounds in milk compared to the strain with a high proteolytic effect. The results showed that a probiotic strain with low or medium proteolytic activity could improve the flavor characteristics of fermented milk.
Collapse
|
5
|
Nicosia FD, Pino A, Maciel GLR, Sanfilippo RR, Caggia C, de Carvalho AF, Randazzo CL. Technological Characterization of Lactic Acid Bacteria Strains for Potential Use in Cheese Manufacture. Foods 2023; 12:foods12061154. [PMID: 36981081 PMCID: PMC10048630 DOI: 10.3390/foods12061154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
A total of 26 lactic acid bacteria isolates from both Italian and Brazilian cheeses were tested for their use in cheesemaking. Isolates were screened for salt tolerance, exopolysaccharide and diacetyl production, lipolytic, acidifying, and proteolytic activities. In addition, the aminopeptidase (Pep N and Pep X) activities, were evaluated. Most of the strains demonstrated salt tolerance to 6% of NaCl, while only two L. delbruekii (P14, P38), one L. rhamnosus (P50) and one L. plantarum (Q3C4) were able to grow in the presence of 10% (w/v) of NaCl. Except for 2 L. plantarum (Q1C6 and Q3C4), all strains showed low or medium acidifying activity and good proteolytic features. Furthermore, lipolytic activity was revealed in none of the strains, while the production of EPS and diacetyl was widespread and variable among the tested strains. Finally, regarding aminopeptidase activities, 1 L. delbrueckii (P10), 1 L. rhamnosus (P50), and 1 L. lactis (Q5C6) were considered as the better performing, showing high values of both Pep N and Pep X. Based on data presented here, the aforementioned strains could be suggested as promising adjunct cultures in cheesemaking.
Collapse
Affiliation(s)
- Fabrizio Domenico Nicosia
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (A.P.)
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (A.P.)
- ProBioEtna SRL, Spin off of the University of Catania, Via Santa Sofia, 100, 95123 Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products University of Catania, 95125 Catania, Italy
| | - Guilherme Lembi Ramalho Maciel
- InovaLeite—Laboratório de Pesquisa em Leite e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa 36570900, MG, Brazil
| | | | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (A.P.)
- ProBioEtna SRL, Spin off of the University of Catania, Via Santa Sofia, 100, 95123 Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products University of Catania, 95125 Catania, Italy
| | - Antonio Fernandes de Carvalho
- InovaLeite—Laboratório de Pesquisa em Leite e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa 36570900, MG, Brazil
| | - Cinzia Lucia Randazzo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (F.D.N.); (A.P.)
- ProBioEtna SRL, Spin off of the University of Catania, Via Santa Sofia, 100, 95123 Catania, Italy
- CERNUT, Interdepartmental Research Centre in Nutraceuticals and Health Products University of Catania, 95125 Catania, Italy
- Correspondence: ; Tel.: +390957580218
| |
Collapse
|
6
|
Geng S, Zhang T, Gao J, Li X, Chitrakar B, Mao K, Sang Y. In vitro screening of synbiotics composed of Lactobacillus paracasei VL8 and various prebiotics and mechanism to inhibits the growth of Salmonella Typhimurium. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
7
|
Lacticaseibacillus rhamnosus CA15 (DSM 33960) as a Candidate Probiotic Strain for Human Health. Nutrients 2022; 14:nu14224902. [PMID: 36432588 PMCID: PMC9694283 DOI: 10.3390/nu14224902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Lactobacilli with probiotic properties have emerged as promising tools for both the prevention and treatment of vaginal dysbiosis. The present study aimed to study the in vitro probiotic potential of the Lacticaseibacillus rhamnosus CA15 (DSM 33960) strain isolated from a healthy vaginal ecosystem. The strain was evaluated for both functional (antagonistic activity against pathogens; H2O2, organic acid, and lactic acid production; antioxidant and anti-inflammatory activities; ability to adhere to intestinal mucus and to both CaCo-2 and VK7/E6E7 cell lines; exopolysaccharide production; surface properties; and ability to survive during gastrointestinal transit) and safety (hemolytic, DNase, and gelatinase activities; mucin degradation ability; production of biogenic amines; and resistance to antimicrobials) characteristics. Data revealed that the tested strain was able to antagonize a broad spectrum of vaginal pathogens. In addition, the adhesion capacity to both vaginal and intestinal cell lines, as well as anti-inflammatory and antioxidant activities, was detected. The ability of the Lacticaseibacillus rhamnosus CA15 (DSM 33960) strain to survive under harsh environmental conditions occurring during the gastrointestinal passage suggests its possible oral delivery. Thus, in vitro data highlighted interesting probiotic properties of the CA15 (DSM 33960) strain, which could represent a valuable candidate for in vivo vaginal infections treatment.
Collapse
|
8
|
Formulation of germinated brown rice fermented products functionalized by probiotics. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Ramos IM, Rodríguez-Sánchez S, Seseña S, Palop ML, Poveda JM. Assessment of safety characteristics, postbiotic potential, and technological stress response of Leuconostoc strains from different origins for their use in the production of functional dairy foods. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Pino A, Benkaddour B, Inturri R, Amico P, Vaccaro SC, Russo N, Vaccalluzzo A, Agolino G, Caggia C, Miloud H, Randazzo CL. Characterization of Bifidobacterium asteroides Isolates. Microorganisms 2022; 10:655. [PMID: 35336230 PMCID: PMC8950671 DOI: 10.3390/microorganisms10030655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Bifidobacteria have long been recognized as bacteria with probiotic and therapeutic features. The aim of this work is to characterize the Bifidobacterium asteroides BA15 and BA17 strains, isolated from honeybee gut, to evaluate its safety for human use. An in-depth assessment was carried out on safety properties (antibiotic resistance profiling, β-hemolytic, DNase and gelatinase activities and virulence factor presence) and other properties (antimicrobial activity, auto-aggregation, co-aggregation and hydrophobicity). Based on phenotypic and genotypic characterization, both strains satisfied all the safety requirements. More specifically, genome analysis showed the absence of genes encoding for glycopeptide (vanA, vanB, vanC-1, vanC-2, vanD, vanE, vanG), resistance to tetracycline (tetM, tetL and tetO) and virulence genes (asa1, gelE, cylA, esp, hyl).
Collapse
Affiliation(s)
- Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| | - Bachir Benkaddour
- Department of Biology, Faculty of Natural Sciences and Life, University of Oran1, Oran 31000, Algeria; (B.B.); (H.M.)
| | - Rosanna Inturri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Department of R&D, Local Noto Unit, Fidia Farmaceutici S.p.A., 96017 Noto, Italy; (P.A.); (S.C.V.)
| | - Pietro Amico
- Department of R&D, Local Noto Unit, Fidia Farmaceutici S.p.A., 96017 Noto, Italy; (P.A.); (S.C.V.)
| | - Susanna C. Vaccaro
- Department of R&D, Local Noto Unit, Fidia Farmaceutici S.p.A., 96017 Noto, Italy; (P.A.); (S.C.V.)
| | - Nunziatina Russo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| | - Amanda Vaccalluzzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
| | - Gianluigi Agolino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| | - Hadadji Miloud
- Department of Biology, Faculty of Natural Sciences and Life, University of Oran1, Oran 31000, Algeria; (B.B.); (H.M.)
| | - Cinzia L. Randazzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (A.V.); (G.A.); (C.C.)
- ProBioEtna S.r.l., Spin-Off of University of Catania, 95123 Catania, Italy
| |
Collapse
|
11
|
Gaglio R, Busetta G, Gannuscio R, Settanni L, Licitra G, Todaro M. A Multivariate Approach to Study the Bacterial Diversity Associated to the Wooden Shelves Used for Aging Traditional Sicilian Cheeses. Foods 2022; 11:774. [PMID: 35267406 PMCID: PMC8909075 DOI: 10.3390/foods11050774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 12/19/2022] Open
Abstract
The present study was carried to correlate the microbial diversity of the biofilms developed on the wooden boards used for aging traditional Sicilian cheeses with cheese typology. To this end, the microbial diversity of the shelves in contact with the cheeses PDO Pecorino Siciliano, PDO Piacentinu Ennese, and TAP Caciocavallo Palermitano, during ripening, was evaluated by a multivariate statistical approach. The shelf biofilms of this study were previously analyzed for their microbial composition, but no correlation between biodiversity and cheese type was investigated. Canonical discriminant analysis confirmed a cheese typology effect on the microbial loads of the wooden shelves investigated. Regarding the plate count data, the centroids of different cheeses were statistically distant from one another. This analysis also showed a good graphic separation of data regarding bacterial order operational taxonomy units (OTUs). Thus, the microbiological differences imputed to the cheese typologies were not affected by the environmental conditions of the facilities. Furthermore, wooden shelf lactic acid bacteria (LAB) were investigated for their ability to inhibit the main dairy pathogens. Although inhibitors were mainly enterococci, P. pentosaceus WS287 and W. paramesenteroides WS581 showed the highest inhibition activity, indicating their possible application to control the undesired bacteria in situ.
Collapse
Affiliation(s)
- Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (R.G.); (G.B.); (R.G.); (M.T.)
| | - Gabriele Busetta
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (R.G.); (G.B.); (R.G.); (M.T.)
| | - Riccardo Gannuscio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (R.G.); (G.B.); (R.G.); (M.T.)
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (R.G.); (G.B.); (R.G.); (M.T.)
| | - Giuseppe Licitra
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy;
| | - Massimo Todaro
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (R.G.); (G.B.); (R.G.); (M.T.)
| |
Collapse
|
12
|
Tamang JP, Lama S. Probiotic Properties of Yeasts in Traditional Fermented Foods and Beverages. J Appl Microbiol 2022; 132:3533-3542. [DOI: 10.1111/jam.15467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Jyoti Prakash Tamang
- DAICENTER (DBT‐AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences Sikkim University Gangtok Sikkim India
| | - Sonam Lama
- DAICENTER (DBT‐AIST International Centre for Translational and Environmental Research) and Bioinformatics Centre, Department of Microbiology, School of Life Sciences Sikkim University Gangtok Sikkim India
| |
Collapse
|
13
|
Pino A, Russo N, Solieri L, Sola L, Caggia C, Randazzo CL. Microbial Consortia Involved in Traditional Sicilian Sourdough: Characterization of Lactic Acid Bacteria and Yeast Populations. Microorganisms 2022; 10:microorganisms10020283. [PMID: 35208738 PMCID: PMC8875953 DOI: 10.3390/microorganisms10020283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Sourdough is one of the oldest starters traditionally used for making baked goods, offering several advantages to the sensory, rheology, and shelf life of final products. The present study investigated, for the first time, the microbiota of spontaneously fermented Maiorca dough samples collected from bakeries located in Sicily (Italy). Four sourdough samples (M1, M2, M3, and M4), were produced using Triticum vulgare Host. var. albidum Koern (Maiorca grain) were subjected to LAB and yeasts isolation and identification at the species level. The in-depth characterization of the lactobacilli population revealed that Lactiplantibacillus plantarum and Levilactobacillus brevis unquestionably dominated the Maiorca sourdough ecosystem. Concerning the yeasts community, high species diversity was found. Saccharomyces cerevisiae and Wickerhamomyces anomalus were the most frequently isolated species. In addition, Torulaspora delbrueckii, Pichia kluyveri, Candida boidinii, and Candida diddensiae were also detected. Investigations on both pro-technological and functional traits of the isolated strains could lead to the selection of starters for the production of baked goods.
Collapse
Affiliation(s)
- Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (C.C.)
- ProBioEtna srl, Spin-off of University of Catania, 95123 Catania, Italy
| | - Nunziatina Russo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (C.C.)
- ProBioEtna srl, Spin-off of University of Catania, 95123 Catania, Italy
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (L.S.); (L.S.)
| | - Laura Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (L.S.); (L.S.)
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (C.C.)
- ProBioEtna srl, Spin-off of University of Catania, 95123 Catania, Italy
| | - Cinzia Lucia Randazzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (C.C.)
- ProBioEtna srl, Spin-off of University of Catania, 95123 Catania, Italy
- Correspondence:
| |
Collapse
|
14
|
Settanni L, Busetta G, Puccio V, Licitra G, Franciosi E, Botta L, Di Gerlando R, Todaro M, Gaglio R. In-Depth Investigation of the Safety of Wooden Shelves Used for Traditional Cheese Ripening. Appl Environ Microbiol 2021; 87:e0152421. [PMID: 34550766 PMCID: PMC8579974 DOI: 10.1128/aem.01524-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 01/04/2023] Open
Abstract
The main goal of this research was to characterize the bacterial diversity of the wooden boards used for aging traditional Sicilian cheeses and to evaluate whether pathogenic bacteria are associated with these surfaces. Eighteen cheese dairy factories producing three traditional cheese typologies (PDO Pecorino Siciliano, PDO Piacentinu Ennese, and Caciocavallo Palermitano) were selected within the region of Sicily. The wooden shelf surfaces were sampled by a destructive method to detach wood splinters as well as by a nondestructive brushing to collect microbial cells. Scanning electron microscopy showed the presence of almost continuous bacterial formations on the majority of the shelves analyzed. Yeasts and fungal hyphae were also visualized, indicating the complexity of the plank communities. The amplicon library of the 16S rRNA gene V3-V4 region was paired-end sequenced using the Illumina MiSeq system, allowing the identification of 14 phyla, 32 classes, 52 orders, 93 families, and 137 genera. Staphylococcus equorum was identified from all wooden surfaces, with a maximum abundance of 64.75%. Among cheese-surface-ripening bacteria, Brevibacterium and Corynebacterium were detected in almost all samples. Several halophilic (Halomonas, Tetragenococcus halophilus, Chromohalobacter, Salimicrobium, Marinococcus, Salegentibacter, Haererehalobacter, Marinobacter, and Idiomarinaceae) and moderately halophilic (Salinicoccus, Psychrobacter, and Salinisphaera) bacteria were frequently identified. Lactic acid bacteria (LAB) were present at low percentages in the genera Leuconostoc, Lactococcus, Lactobacillus, Pediococcus, and Streptococcus. The levels of viable microorganisms on the wooden shelves ranged between 2.4 and 7.8 log CFU/cm2. In some cases, LAB were counted at very high levels (8.2 log CFU/cm2). Members of the Enterobacteriaceae family were detected in a viable state for only six samples. Coagulase-positive staphylococci, Salmonella spp., and Listeria monocytogenes were not detected. Seventy-five strains belonged to the genera Leuconostoc, Lactococcus, Pediococcus, Enterococcus, Lactobacillus, and Weissella. IMPORTANCE This study provides evidence for the lack of pathogenic bacteria on the wooden shelves used to ripen internal bacterially ripened semihard and hard cheeses produced in Sicily. These three cheeses are not inoculated on their surfaces, and surface ripening is not considered to occur or, at least, does not occur at the same extent as surface-inoculated smear cheeses. Several bacterial groups identified from the wooden shelves are typically associated with smear cheeses, strongly suggesting that PDO Pecorino Siciliano, PDO Piacentinu Ennese, and Caciocavallo Palermitano cheese rind contributes to their final organoleptic profiles.
Collapse
Affiliation(s)
- Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Gabriele Busetta
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Valeria Puccio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Giuseppe Licitra
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di Catania, Catania, Italy
| | - Elena Franciosi
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, Italy
| | - Luigi Botta
- Dipartimento di Ingegneria, UdR INSTM di Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Massimo Todaro
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università di Palermo, Palermo, Italy
| |
Collapse
|
15
|
Role of Exposure to Lactic Acid Bacteria from Foods of Animal Origin in Human Health. Foods 2021; 10:foods10092092. [PMID: 34574202 PMCID: PMC8471122 DOI: 10.3390/foods10092092] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
Animal products, in particular dairy and fermented products, are major natural sources of lactic acid bacteria (LAB). These are known for their antimicrobial properties, as well as for their roles in organoleptic changes, antioxidant activity, nutrient digestibility, the release of peptides and polysaccharides, amino acid decarboxylation, and biogenic amine production and degradation. Due to their antimicrobial properties, LAB are used in humans and in animals, with beneficial effects, as probiotics or in the treatment of a variety of diseases. In livestock production, LAB contribute to animal performance, health, and productivity. In the food industry, LAB are applied as bioprotective and biopreservation agents, contributing to improve food safety and quality. However, some studies have described resistance to relevant antibiotics in LAB, with the concomitant risks associated with the transfer of antibiotic resistance genes to foodborne pathogens and their potential dissemination throughout the food chain and the environment. Here, we summarize the application of LAB in livestock and animal products, as well as the health impact of LAB in animal food products. In general, the beneficial effects of LAB on the human food chain seem to outweigh the potential risks associated with their consumption as part of animal and human diets. However, further studies and continuous monitorization efforts are needed to ensure their safe application in animal products and in the control of pathogenic microorganisms, preventing the possible risks associated with antibiotic resistance and, thus, protecting public health.
Collapse
|
16
|
Blaiotta G, Marrone R, Aponte M, Peruzy MF, Smaldone G, Vollano L, Murru N. Characterisation of Conciato Romano: one of the oldest Italian cheeses. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Ayyash MM, Abdalla AK, AlKalbani NS, Baig MA, Turner MS, Liu SQ, Shah NP. Invited review: Characterization of new probiotics from dairy and nondairy products-Insights into acid tolerance, bile metabolism and tolerance, and adhesion capability. J Dairy Sci 2021; 104:8363-8379. [PMID: 33934857 DOI: 10.3168/jds.2021-20398] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The selection of potential probiotic strains that possess the physiological capacity of performing successfully in the gastrointestinal tract (GIT) is a critical challenge. Probiotic microorganisms must tolerate the deleterious effects of various stresses to survive passage and function in the human GIT. Adhesion to the intestinal mucosa is also an important aspect. Recently, numerous studies have been performed concerning the selection and evaluation of novel probiotic microorganisms, mainly probiotic bacteria isolated from dairy and nondairy products. Therefore, it would be crucial to critically review the assessment methods employed to select the potential probiotics. This article aims to review and discuss the recent approaches, methods used for the selection, and outcomes of the evaluation of novel probiotic strains with the main purpose of supporting future probiotic microbial assessment studies. The findings and approaches used for assessing acid tolerance, bile metabolism and tolerance, and adhesion capability are the focus of this review. In addition, probiotic bile deconjugation and bile salt hydrolysis are explored. The selection of a new probiotic strain has mainly been based on the in vitro tolerance of physiologically related stresses including low pH and bile, to ensure that the potential probiotic microorganism can survive the harsh conditions of the GIT. However, the varied experimental conditions used in these studies (different types of media, bile, pH, and incubation time) hamper the comparison of the results of these investigations. Therefore, standardization of experimental conditions for characterizing and selecting probiotics is warranted.
Collapse
Affiliation(s)
- Mutamed M Ayyash
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates.
| | - Abdelmoneim K Abdalla
- Food Science Department, College of Agriculture, South Valley University, 83523 Qena, Egypt
| | - Nadia S AlKalbani
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mohd Affan Baig
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University (UAEU), PO Box 15551, Al Ain, United Arab Emirates
| | - Mark S Turner
- School of Agriculture and Food Sciences, The University of Queensland (UQ), Brisbane, QLD 4072, Australia
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, S14 Level 5, Science Drive 2 117542, Singapore
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong 999077, P.R. China
| |
Collapse
|
18
|
Rodríguez-Sánchez S, Ramos IM, Seseña S, Poveda JM, Palop ML. Potential of Lactobacillus strains for health-promotion and flavouring of fermented dairy foods. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Zheng X, Fang R, Wang C, Tian X, Lin J, Zeng W, Zhou T, Xu C. Resistance Profiles and Biological Characteristics of Rifampicin-Resistant Staphylococcus aureus Small-Colony Variants. Infect Drug Resist 2021; 14:1527-1536. [PMID: 33911880 PMCID: PMC8071703 DOI: 10.2147/idr.s301863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Background Staphylococcus aureus (S. aureus) is a major contributor to nosocomial and community-acquired infections. S. aureus small colony variants (SCVs) which changed in relevant phenotype have made more limited and difficult for therapeutic options against S. aureus infections increasingly. Rifampicin is considered as the "last-resort" antibiotic against S. aureus. Our study investigated resistance profiles and biological characteristics of rifampicin-resistant S. aureus SCVs. Methods We collected S. aureus SCVs that were selected from 41 rifampicin-resistant clinical isolates. Then, biological characteristics, resistance spectrum, and rifampicin resistance mechanisms of tested S. aureus SCVs and corresponding parental strains were investigated by classic microbiological methods, agar dilution method, polymerase chain reaction (PCR). Moreover, the fitness cost of S. aureus SCVs, including growth, biofilm formation ability, and virulence profile, was also determined by bacterial growth curve assay, biofilm formation assay, and Galleria mellonella infection model. Results There were three S. aureus SCVs (JP310 SCVs, JP1450 SCVs, JP1486 SCVs) that were selected from 41 rifampicin-resistant S. aureus. S. aureus SCVs colonies were tiny, with decreased pigmentation, and the hemolysis circle was not obvious compared with corresponding parental strains. And SCVs could not be restored to normal-colony phenotype after hemin, menaquinone, or thymidine supplementation. Different rpoB mutations occurred in JP1486 SCVs. Antimicrobial susceptibility testing revealed MICs of SCVs were higher than corresponding parental strains. Besides, the growth ability and virulence of SCVs were lower, and biofilm formation ability of which increased compared with parental strains. Conclusion S. aureus SCVs share the rifampicin resistance mechanisms with parental strains, although there were some differences in the position of rpoB mutations. Moreover, we found that the biological characteristics of SCVs were significantly different from corresponding parental strains. In contrast, decreased susceptibility to other antibiotics of SCVs was observed during phenotype switch. Furthermore, SCVs incur the fitness cost.
Collapse
Affiliation(s)
- Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Renchi Fang
- Department of Laboratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Chong Wang
- Department of Laboratory Medicine, Qingdao Municipal Hospital, Qingdao, 266000, People's Republic of China
| | - Xuebin Tian
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Jie Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Weiliang Zeng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| | - Chunquan Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, People's Republic of China
| |
Collapse
|
20
|
Barbaccia P, Francesca N, Gerlando RD, Busetta G, Moschetti G, Gaglio R, Settanni L. Biodiversity and dairy traits of indigenous milk lactic acid bacteria grown in presence of the main grape polyphenols. FEMS Microbiol Lett 2021; 367:5819959. [PMID: 32286619 DOI: 10.1093/femsle/fnaa066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/10/2020] [Indexed: 01/17/2023] Open
Abstract
The present work was developed to select lactic acid bacteria (LAB) to be used as starter cultures in functional cheese production. The indigenous milk LAB populations were isolated from fermented raw ewes' milks (four bulks) added with 0.5 mg/mL of nine polyphenols commonly found in winery by-products. After 48 h of fermentation, all milks were characterized by an increase of LAB levels of about 3-4 Log cycles. All different colonies were purified and characterized for the main physiological and biochemical traits and then differentiated genetically at strain level and identified. Ten species belonging to the LAB genera Lactobacillus, Streptococcus, Enterococcus, Leuconostoc and Lactococcus were identified. Only Lactococcus lactis and Leuconostoc mesenteroides strains were evaluated for the technological traits including acidification and autolytic kinetics, diacetyl formation, exopolysaccharide production and generation of antimicrobial compounds. A total of four strains (Mise36, Mise94 Mise169 and Mise190) belonging to Lc. lactis displayed potential for production of cheeses containing grape polyphenols.
Collapse
Affiliation(s)
- Pietro Barbaccia
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Ed. 5, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Nicola Francesca
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Ed. 5, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Ed. 5, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Gabriele Busetta
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Ed. 5, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Giancarlo Moschetti
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Ed. 5, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Ed. 5, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Ed. 5, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
21
|
A clinical pilot study on the effect of the probiotic Lacticaseibacillus rhamnosus TOM 22.8 strain in women with vaginal dysbiosis. Sci Rep 2021; 11:2592. [PMID: 33510271 PMCID: PMC7843994 DOI: 10.1038/s41598-021-81931-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
Lactobacilli with probiotic features play an essential role in maintaining a balanced vaginal microbiota and their administration has been suggested for the treatment and prevention of vaginal dysbiosis. The present study was aimed to in vitro and in vivo investigate the probiotic potential of the Lacticaseibacillus rhamnosus TOM 22.8 strain, isolated from the vaginal ecosystem of a healthy woman. For this purpose, safety and functional properties were in depth evaluated. The strain exhibited a broad spectrum of antagonistic activity against vaginal pathogens; adhesion capacity to both the vaginal VK2/E6E7 and the intestinal Caco-2 cells; anti-inflammatory and antioxidant activities, suggesting its promising probiotic features. In addition, an in vivo pilot-study was planned. Based on both clinical and microbiological parameters, the oral or vaginal strain administration, determined a significant pathogens reduction after 10 days of administration and a maintenance of eubiosis up to 30 days after the end of the treatment. Therefore, the L. rhamnosus TOM 22.8 strain can be proposed as valuable oral and/or vaginal treatment for vaginal dysbiosis.
Collapse
|
22
|
Randazzo CL, Liotta L, Angelis MD, Celano G, Russo N, Hoorde KV, Chiofalo V, Pino A, Caggia C. Adjunct Culture of Non-Starter Lactic Acid Bacteria for the Production of Provola Dei Nebrodi PDO Cheese: In Vitro Screening and Pilot-Scale Cheese-Making. Microorganisms 2021; 9:179. [PMID: 33467737 PMCID: PMC7829852 DOI: 10.3390/microorganisms9010179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 11/24/2022] Open
Abstract
The present study aimed at selecting non-starter lactic acid bacteria strains, with desirable technological and enzymatic activities, suitable as adjunct culture for the Provola dei Nebrodi cheese production. One hundred and twenty-one lactic acid bacteria, isolated from traditional Provola dei Nebrodi cheese samples, were genetically identified by Rep-PCR genomic fingerprinting, using the (GTG)5-primer, and by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Twenty-seven strains, included in the qualified presumption of safety (QPS) list, were tested for technological and proteinase/peptidase activities. Results showed that technological features and flavour formation abilities were strain-dependent. Among the selected strains, Lacticaseibacillus paracasei PN 76 and Limosilactobacillus fermentum PN 101 were used as adjunct culture in pilot-scale cheese-making trials. Data revealed that adjunct cultures positively affected the flavour development of cheese, starting from 30 days of ripening, contributing to the formation of key flavour compounds. The volatile organic compound profiles of experimental cheeses was significantly different from those generated in the controls, suggesting that the selected adjunct strains were able to accelerate the flavour development, contributing to a unique profile of Provola dei Nebrodi cheese.
Collapse
Affiliation(s)
- Cinzia Lucia Randazzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (C.L.R.); (N.R.); (C.C.)
| | - Luigi Liotta
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy; (M.D.A.); (G.C.)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy; (M.D.A.); (G.C.)
| | - Nunziatina Russo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (C.L.R.); (N.R.); (C.C.)
| | | | - Vincenzo Chiofalo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (C.L.R.); (N.R.); (C.C.)
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (C.L.R.); (N.R.); (C.C.)
| |
Collapse
|
23
|
Chourasia R, Abedin MM, Chiring Phukon L, Sahoo D, Singh SP, Rai AK. Biotechnological approaches for the production of designer cheese with improved functionality. Compr Rev Food Sci Food Saf 2020; 20:960-979. [PMID: 33325160 DOI: 10.1111/1541-4337.12680] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Cheese is a product of ancient biotechnological practices, which has been revolutionized as a functional food product in many parts of the world. Bioactive compounds, such as peptides, polysaccharides, and fatty acids, have been identified in traditional cheese products, which demonstrate functional properties such as antihypertensive, antioxidant, immunomodulation, antidiabetic, and anticancer activities. Besides, cheese-making probiotic lactic acid bacteria (LAB) exert a positive impact on gut health, aiding in digestion, and improved nutrient absorption. Advancement in biotechnological research revealed the potential of metabolite production with prebiotics and bioactive functions in several strains of LAB, yeast, and filamentous fungi. The application of specific biocatalyst producing microbial strains enhances nutraceutical value, resulting in designer cheese products with multifarious health beneficial effects. This review summarizes the biotechnological approaches applied in designing cheese products with improved functional properties.
Collapse
Affiliation(s)
- Rounak Chourasia
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India.,Department of Botany, University of Delhi, New Delhi, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, SAS Nagar, Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| |
Collapse
|
24
|
Terzić-Vidojević A, Veljović K, Tolinački M, Živković M, Lukić J, Lozo J, Fira Đ, Jovčić B, Strahinić I, Begović J, Popović N, Miljković M, Kojić M, Topisirović L, Golić N. Diversity of non-starter lactic acid bacteria in autochthonous dairy products from Western Balkan Countries - Technological and probiotic properties. Food Res Int 2020; 136:109494. [PMID: 32846575 DOI: 10.1016/j.foodres.2020.109494] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The aim of this review was to summarize the data regarding diversity of non-starter lactic acid bacteria (NSLAB) isolated from various artisanal dairy products manufactured in Western Balkan Countries. The dairy products examined were manufactured from raw cow's, sheep's or goat's milk or mixed milk, in the traditional way without the addition of commercial starter cultures. Dairy products such as white brined cheese, fresh cheese, hard cheese, yogurt, sour cream and kajmak were sampled in the households of Serbia, Croatia, Slovenia, Bosnia and Herzegovina, Montenegro, and North Macedonia. It has been established that the diversity of lactic acid bacteria (LAB) from raw milk artisanal dairy products is extensive. In the reviewed literature, 28 LAB species and a large number of strains belonging to the Lactobacillus, Lactococcus, Enterococcus, Streptococcus, Pediococcus, Leuconostoc and Weissella genera were isolated from various dairy products. Over 3000 LAB strains were obtained and characterized for their technological and probiotic properties including: acidification and coagulation of milk, production of aromatic compounds, proteolytic activity, bacteriocins production and competitive exclusion of pathogens, production of exopolysaccharides, aggregation ability and immunomodulatory effect. Results show that many of the isolated NSLAB strains had one, two or more of the properties mentioned. The data presented emphasize the importance of artisanal products as a valuable source of NSLAB with unique technological and probiotic features important both as a base for scientific research as well as for designing novel starter cultures for functional dairy food.
Collapse
Affiliation(s)
- Amarela Terzić-Vidojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia.
| | - Katarina Veljović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milica Živković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jovanka Lukić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Lozo
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Đorđe Fira
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Branko Jovčić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Ivana Strahinić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Jelena Begović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nikola Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Marija Miljković
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Milan Kojić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Ljubiša Topisirović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
| |
Collapse
|
25
|
Capozzi V, Fragasso M, Russo P. Microbiological Safety and the Management of Microbial Resources in Artisanal Foods and Beverages: The Need for a Transdisciplinary Assessment to Conciliate Actual Trends and Risks Avoidance. Microorganisms 2020; 8:E306. [PMID: 32098373 PMCID: PMC7074853 DOI: 10.3390/microorganisms8020306] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/25/2022] Open
Abstract
Current social and environmental trends explain the rising popularity of artisanal fermented foods and beverages. In contrast with their marketing success, several studies underline a lack of regulations necessary to claim differences occurred from the farm to the fork and to certify high quality and safety standards. Microbial-based fermentative processes represent the crucial phase in the production of fermented foods and beverages. Nevertheless, what are the effects of the application of the "artisanal" category to the management of food fermentations? This opinion paper is built up on this issue by analyzing microbial aspects, instances of innovation, safety issues, and possible solutions. Evidence indicates: (i) a global curiosity to exploit food fermentations as drivers of innovation in artisanal contexts and (ii) an increasing interest of the artisanal producers into management of fermentation that relies on native microbial consortia. Unfortunately, this kind of revamp of "artisanal food microbiology," rather than re-establishing artisanal content, can restore the scarce hygienic conditions that characterized underdeveloped food systems. We highlight that in the scientific literature, it is possible to underline existing approaches that, surpassing the dichotomy between relying on spontaneous fermentation and the use of commercial starter cultures, depict a "third way" to conjugate interest in enhancing the artisanal attributes with the need for correct management of microbial-related risks in the final products.
Collapse
Affiliation(s)
- Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR), c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Mariagiovanna Fragasso
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (M.F.); (P.R.)
| | - Pasquale Russo
- Department of the Sciences of Agriculture, Food and Environment, University of Foggia, Via Napoli 25, 71122 Foggia, Italy; (M.F.); (P.R.)
| |
Collapse
|
26
|
Bioprospecting for Bioactive Peptide Production by Lactic Acid Bacteria Isolated from Fermented Dairy Food. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5040096] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With rapidly ageing populations, the world is experiencing unsustainable healthcare from chronic diseases such as metabolic, cardiovascular, neurodegenerative, and cancer disorders. Healthy diet and lifestyle might contribute to prevent these diseases and potentially enhance health outcomes in patients during and after therapy. Fermented dairy foods (FDFs) found their origin concurrently with human civilization for increasing milk shelf-life and enhancing sensorial attributes. Although the probiotic concept has been developed more recently, FDFs, such as milks and yoghurt, have been unconsciously associated with health-promoting effects since ancient times. These health benefits rely not only on the occurrence of fermentation-associated live microbes (mainly lactic acid bacteria; LAB), but also on the pro-health molecules (PHMs) mostly derived from microbial conversion of food compounds. Therefore, there is a renaissance of interest toward traditional fermented food as a reservoir of novel microbes producing PHMs, and “hyperfoods” can be tailored to deliver these healthy molecules to humans. In FDFs, the main PHMs are bioactive peptides (BPs) released from milk proteins by microbial proteolysis. BPs display a pattern of biofunctions such as anti-hypertensive, antioxidant, immuno-modulatory, and anti-microbial activities. Here, we summarized the BPs most frequently encountered in dairy food and their biological activities; we reviewed the main studies exploring the potential of dairy microbiota to release BPs; and delineated the main effectors of the proteolytic LAB systems responsible for BPs release.
Collapse
|