1
|
Calik A, Niraula A, Dong B, Blue CEC, Fenster DA, Dalloul RA. Iohexol-based assessment of intestinal permeability in broilers challenged with Eimeria maxima, Clostridium perfringens or both. Front Physiol 2024; 15:1520346. [PMID: 39759108 PMCID: PMC11695284 DOI: 10.3389/fphys.2024.1520346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Impaired intestinal integrity in broilers reduces performance and health, highlighting the importance of accurately measuring intestinal permeability (IP) to maintain gut health. The objective of this study was to evaluate the efficiency of iohexol as an IP marker in broilers challenged with Eimeria maxima, Clostridium perfringens, or both during both peak challenge (day [d] 21) and recovery (d 28) periods. One-day-old male Ross 708 birds (n = 56) were distributed into 4 treatment groups: NC (no-challenge control); EM (challenged with 5,000 E. maxima sporulated oocysts/bird on d 15); CP (challenged with 1.0 × 108 CFUs/bird of C. perfringens on d 19 and d 20); and EM + CP (challenged by co-infection of E. maxima and C. perfringens as described). On d 21 and d 28, each bird received an iohexol dose of 64.7 mg/kg body weight via oral gavage. One hour later, blood samples were collected from 14 birds (12 in EM) per group on d 21 and from 7 birds (6 in EM) on d 28. For lesion scoring and ileum collection, 7 birds per group (6 birds in EM) were sampled on each d 21 and d 28. Birds in the EM and EM + CP groups had lower body weight gain (BWG) compared to the NC and CP groups on d 19-21 (P ≤ 0.05). These birds also exhibited significantly greater lesion scores and markedly higher serum iohexol levels on d 21 (P ≤ 0.05). However, no significant differences in serum iohexol levels were observed among treatment groups following recovery on d 28. Moreover, significant differentials were observed in the mRNA abundance of key tight junction proteins (CLDN1, CLDN2, and ZO3), pro-inflammatory cytokines (IL-1β, IFNγ, and IL-22), and gut health markers (GLP2, OLFM4, and MUC2) in the EM and EM + CP groups compared to the NC and CP groups on d 21. In conclusion, this study demonstrates that iohexol is an effective marker for assessing IP in broilers under different enteric challenge conditions.
Collapse
Affiliation(s)
- Ali Calik
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara, Türkiye
| | - Abhisek Niraula
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Bingqi Dong
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Candice E. C. Blue
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Davis A. Fenster
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Rami A. Dalloul
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Boothe SM, Calik A, Emami NK, Dalloul RA. Research Note: Effects of on-farm and hatchery hatching on broiler performance, intestinal lesions, and immune response during a subclinical necrotic enteritis challenge. Poult Sci 2024; 103:104323. [PMID: 39305613 PMCID: PMC11458968 DOI: 10.1016/j.psj.2024.104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 10/11/2024] Open
Abstract
The effects of traditional and on-farm hatching systems on broiler performance and health under a subclinical necrotic enteritis (NE) challenge were evaluated in this study. A 2×2 factorial study explored the effects of place of hatch (on-farm hatched [OFH] vs. hatchery hatched [HH]) and NE challenge (nonchallenged vs. challenged) on broilers. Cobb 500 eggs (∼E19) were acquired from a commercial hatchery; 840 eggs were placed in pens on clean shavings in prewarmed floor pens and allowed to hatch out, while 927 eggs were placed in a hatcher set under standard practices. On day (d) of hatch, all chicks were weighed and randomly distributed to 4 treatments (8 replicate pens each and 30 birds/pen). The OFH birds were placed immediately after sorting while HH birds were placed back in the hatcher overnight to simulate commercial hatchery procedures. After placing HH birds, feed and litter in the challenge group pens were sprayed with a live oocyst coccidia vaccine as a predisposing factor to NE. The small intestines of 3 male chicks per pen were scored for NE lesions (n = 24) on d 8 (peak NE challenge) and jejunal samples were collected from 1 bird per pen for RNA extraction and qPCR on d 8 and d 14. Data were analyzed using JMP Pro17 and significance between treatments was identified by LSD (P ≤ 0.05). Regardless of the hatching system, the subclinical NE challenge caused a significant reduction in average daily gain (ADG) and average daily feed intake (ADFI), and increased feed conversion ratio (FCR) until d 28 (P ≤ 0.05). Moreover, OFH birds exhibited significantly better growth (P ≤ 0.05) through d 28 but had similar performance to HH birds by d 42. There were no significant differences in NE lesion scores between HH and OFH groups. In conclusion, OFH system resulted in better broiler performance compared to HH system under both no-challenge and challenge conditions during the starter and grower periods. This practice may hold potential for further exploration by the industry as an alternative to traditional hatching, aiming to improve the welfare and productivity of broilers.
Collapse
Affiliation(s)
- Siobhan M Boothe
- Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ali Calik
- Department of Poultry Science, Avian Immunobiology Laboratory, University of Georgia, Athens, GA 30602, USA; Department of Animal Nutrition & Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Türkiye
| | - Nima K Emami
- Department of Poultry Science, Avian Immunobiology Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Rami A Dalloul
- Department of Poultry Science, Avian Immunobiology Laboratory, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
3
|
Shamshirgaran MA, Golchin M. A comprehensive review of experimental models and induction protocols for avian necrotic enteritis over the past 2 decades. Front Vet Sci 2024; 11:1429637. [PMID: 39113718 PMCID: PMC11304537 DOI: 10.3389/fvets.2024.1429637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 08/10/2024] Open
Abstract
Necrotic enteritis (NE) is a severe gastrointestinal disease that poses a significant threat to the poultry industry. It leads to progressive damage to the small intestine, reduced performance, increased mortality rates, and substantial economic losses. With the removal of antimicrobial agents from chicken feed, there is an urgent need to find alternative approaches for NE control. Various approaches, including vaccination, prebiotics, probiotics, and plant-derived products, have been utilized to address NE in poultry management. To evaluate the efficacy of these preventive measures against NE, successful induction of NE is crucial to observe effects of these approaches in related studies. This study presents a comprehensive overview of the methods and approaches utilized for NE reproduction in related studies from 2004 to 2023. These considerations are the careful selection of a virulent Clostridium perfringens strain, preparation of challenge inoculum, choice of time and the route for challenge inoculum administration, and utilization of one or more predisposing factors to increase the rate of NE occurrence in birds under experiment. We also reviewed the different systems used for lesion scoring of NE-challenged birds. By gaining clarity on these fundamental parameters, researchers can make informed decisions regarding the selection of the most appropriate NE experimental design in their respective studies.
Collapse
|
4
|
Geevarghese AV, Kasmani FB, Dolatyabi S. Curcumin and curcumin nanoparticles counteract the biological and managemental stressors in poultry production: An updated review. Res Vet Sci 2023; 162:104958. [PMID: 37517298 DOI: 10.1016/j.rvsc.2023.104958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Antibiotics have the potential to have both direct and indirect detrimental impacts on animal and human health. For instance, antibiotic residues and pathogenic resistance against the drug are very common in poultry because of antibiotics used in their feed. It is necessary to use natural feed additives as effective alternatives instead of synthetic antibiotics. Curcumin, a polyphenol compound one of the natural compounds from the rhizomes of turmeric (Curcuma spp.) and has been suggested to have several therapeutic benefits in the treatment of human diseases. Curcumin exhibited some positive responses such as growth promoter, antioxidant, antibacterial, antiviral, anticoccidial, anti-stress, and immune modulator activities. Curcumin played a pivotal role in regulating the structure of the intestinal microbiome for health promotion and the treatment of intestinal dysbiosis. It is suggested that curcumin alone or a combination with other feed additives could be a dietary strategy to improve poultry health and productivity.
Collapse
Affiliation(s)
- Abin V Geevarghese
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu, India.
| | | | - Sara Dolatyabi
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Ohio, USA
| |
Collapse
|
5
|
Blue CEC, Emami NK, White MB, Cantley S, Dalloul RA. Inclusion of Quillaja Saponin Clarity Q Manages Growth Performance, Immune Response, and Nutrient Transport of Broilers during Subclinical Necrotic Enteritis. Microorganisms 2023; 11:1894. [PMID: 37630454 PMCID: PMC10456759 DOI: 10.3390/microorganisms11081894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Necrotic enteritis (NE) is an intestinal disease that results in poor performance, inefficient nutrient absorption, and has a devastating economic impact on poultry production. This study evaluated the effects of a saponin-based product (Clarity Q, CQ) during an NE challenge. A total of 1200 male chicks were randomly assigned to four dietary treatments (10 pens/treatment; 30 birds/pen): treatment 1 (NC), a non-medicated corn-soybean basal diet; treatment 2 (PC), NC + 50 g/metric ton (MT) of bacitracin methylene disalicylate (BMD); and treatments 3 (CQ15) and 4 (CQ30), NC + 15 and 30 g/MT, respectively. On the day (d) of placement, birds were challenged by a coccidia vaccine to induce NE. On d 8, 14, 28, and 42, performance parameters were measured. On d 8, three birds/pen were necropsied for NE lesions. On d 8 and d 14, jejunum samples from one bird/pen were collected for mRNA abundance of tight junction proteins and nutrient transporter genes. Data were analyzed in JMP (JMP Pro, 16), and significance (p ≤ 0.05) between treatments was identified by Fisher's least significant difference (LSD) test. Compared to PC and NC, CQ15 had higher average daily gain (ADG), while CQ30 had lower average daily feed intake (ADFI) and feed conversion ratio (FCR). NE lesions in the duodenum were lower in CQ15 compared to all other treatments. On d 8, mRNA abundance of CLDN1, CLDN5, AMPK, PepT2, GLUT2, and EAAT3 were significantly greater in CQ30 (p < 0.05) compared to both PC and NC. On d 14, mRNA abundance of ZO2 and PepT2 was significantly lower in PC when compared to all treatments, while that of ANXA1, JAM3, and GLUT5 was comparable to CQ15. In summary, adding Clarity Q to broiler diets has the potential to alleviate adverse effects caused by this enteric disease by improving performance, reducing intestinal lesions, and positively modulating the mRNA abundance of various tight junction proteins and key nutrient transporters during peak NE infection.
Collapse
Affiliation(s)
- Candice E. C. Blue
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Nima K. Emami
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Mallory B. White
- School of STEM, Virginia Western Community College, Roanoke, VA 24015, USA
| | | | - Rami A. Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Fan YC, Wu YT, Wu YHS, Wang CL, Chou CH, Chen YC, Tsai HJ. Investigation of Trehalose Supplementation Impacting Campylobacter jejuni and Clostridium perfringens from Broiler Farming. Vet Sci 2023; 10:466. [PMID: 37505870 PMCID: PMC10385778 DOI: 10.3390/vetsci10070466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
In 2006, the European Commission banned the use of antibiotic promoters in animal feed. However, there is a new situation in poultry disease where it is necessary to study feed additives, which can overcome the diseases that were previously controlled through the addition of antibiotics and antimicrobial growth promoters in the feed. Therefore, trehalose was investigated to determine whether it impacts the growth performance and pathogenic bacteria (C. jejuni and C. perfringens) inoculation in broilers. In the first experiment, the tolerance of broilers to the addition of trehalose to their feed was investigated. There was no significant difference (p > 0.05) in body weight changes, daily weight gain, feed intake or feed conversion ratio during the feeding period. Within a 35-day feeding period, it was concluded that a trehalose dosage up to 10% does not exert a negative effect on broiler farming. Moreover, there was no significant difference (p > 0.05) in the broilers' growth performance, as well as C. jejuni and C. perfringens counts in the intestines and feces of broilers observed over a 5-week feeding period. However, Lactobacillus counts significantly increased in these groups with 3% and 5% trehalose supplementation. The findings indicate that trehalose supplementation in the feed cannot directly decrease C. jejuni and C. perfringens counts but may enhance gut health by raising Lactobacillus counts in chicken gut, particularly when enteropathogenic bacteria are present.
Collapse
Affiliation(s)
- Yang-Chi Fan
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| | - Yi-Tei Wu
- Department of Animal Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| | - Yi-Hsieng Samuel Wu
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming Chiao Tung University-Yangming Campus, 155, Sec. 2, Linong Street, Taipei 112, Taiwan
| | - Chia-Lan Wang
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| | - Hsiang-Jung Tsai
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei City 106, Taiwan
| |
Collapse
|
7
|
El Basuini MF, Khattab AAA, Hafsa SHA, Teiba II, Elkassas NEM, El-Bilawy EH, Dawood MAO, Atia SES. Impacts of algae supplements (Arthrospira & Chlorella) on growth, nutrient variables, intestinal efficacy, and antioxidants in New Zealand white rabbits. Sci Rep 2023; 13:7891. [PMID: 37193743 PMCID: PMC10188536 DOI: 10.1038/s41598-023-34914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/09/2023] [Indexed: 05/18/2023] Open
Abstract
An 8-week trial to examine the impacts of Arthrospira platensis and Chlorella vulgaris on the growth, nutrient aspects, intestinal efficacy, and antioxidants of 75 New Zealand white male rabbits (initial body weight = 665.93 ± 15.18 g). Herein the study was designed in one-way ANOVA to compare the effects of the two algae species with two levels of supplementations in the feeds of New Zealand white rabbits. The rabbits were divided into five groups (n = 15/group), where the first group was allocated as the control group (Ctrl) while the second and third groups received A. platensis at 300 or 500 mg/kg diet (Ap300 or Ap500). The fourth and fifth groups fed C. vulgaris at 300 or 500 mg/kg diet (Ch300 or Ch500). The basal diet rabbits exhibited the lowest values of weight, lipase, protease, and the highest feed conversion ratio, which improved noticeably with algae addition, particularly with Ap500, Ch300, and Ch500. All tested groups showed normal intestinal structure. Amylase potency, hematological indicators, and serum biochemistry revealed non-significant variation except for a higher serum total protein and lower total cholesterol in algal groups. The best GPx existed in groups fed algal diets, while favorable SOD and CAT efficiency occurred at the higher level of Arthrospira and both levels of Chlorella. In conclusion, incorporating Arthrospira or Chlorella in the diet of New Zealand white rabbits improved performance, nutrient utilization, intestinal efficacy, and antioxidants. Arthrospira (Ap500) and Chlorella (Ch300 or Ch500) have almost the same beneficial effect on rabbit performance.
Collapse
Affiliation(s)
- Mohammed F El Basuini
- Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt.
- King Salman International University, South Sinai, 46618, Egypt.
| | | | - Salma H Abu Hafsa
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, 21934, Alexandria, Egypt
| | - Islam I Teiba
- Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt
| | - Nabila E M Elkassas
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | | | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
- The Center for Applied Research On the Environment and Sustainability, The American University in Cairo, Cairo, 11835, Egypt
| | | |
Collapse
|
8
|
Obianwuna UE, Agbai Kalu N, Wang J, Zhang H, Qi G, Qiu K, Wu S. Recent Trends on Mitigative Effect of Probiotics on Oxidative-Stress-Induced Gut Dysfunction in Broilers under Necrotic Enteritis Challenge: A Review. Antioxidants (Basel) 2023; 12:antiox12040911. [PMID: 37107286 PMCID: PMC10136232 DOI: 10.3390/antiox12040911] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 03/02/2023] [Indexed: 04/29/2023] Open
Abstract
Gut health includes normal intestinal physiology, complete intestinal epithelial barrier, efficient immune response, sustained inflammatory balance, healthy microbiota, high nutrient absorption efficiency, nutrient metabolism, and energy balance. One of the diseases that causes severe economic losses to farmers is necrotic enteritis, which occurs primarily in the gut and is associated with high mortality rate. Necrotic enteritis (NE) primarily damages the intestinal mucosa, thereby inducing intestinal inflammation and high immune response which diverts nutrients and energy needed for growth to response mediated effects. In the era of antibiotic ban, dietary interventions like microbial therapy (probiotics) to reduce inflammation, paracellular permeability, and promote gut homeostasis may be the best way to reduce broiler production losses. The current review highlights the severity effects of NE; intestinal inflammation, gut lesions, alteration of gut microbiota balance, cell apoptosis, reduced growth performance, and death. These negative effects are consequences of; disrupted intestinal barrier function and villi development, altered expression of tight junction proteins and protein structure, increased translocation of endotoxins and excessive stimulation of proinflammatory cytokines. We further explored the mechanisms by which probiotics mitigate NE challenge and restore the gut integrity of birds under disease stress; synthesis of metabolites and bacteriocins, competitive exclusion of pathogens, upregulation of tight junction proteins and adhesion molecules, increased secretion of intestinal secretory immunoglobulins and enzymes, reduction in pro-inflammatory cytokines and immune response and the increased production of anti-inflammatory cytokines and immune boost via the modulation of the TLR/NF-ĸ pathway. Furthermore, increased beneficial microbes in the gut microbiome improve nutrient utilization, host immunity, and energy metabolism. Probiotics along with biosecurity measures could mitigate the adverse effects of NE in broiler production.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Nenna Agbai Kalu
- Department of Animal Science, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Jing Wang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haijun Zhang
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guanghai Qi
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kai Qiu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shugeng Wu
- National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Wang F, Zou P, Xu S, Wang Q, Zhou Y, Li X, Tang L, Wang B, Jin Q, Yu D, Li W. Dietary supplementation of Macleaya cordata extract and Bacillus in combination improve laying performance by regulating reproductive hormones, intestinal microbiota and barrier function of laying hens. J Anim Sci Biotechnol 2022; 13:118. [PMID: 36224643 PMCID: PMC9559840 DOI: 10.1186/s40104-022-00766-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate whether the combination of Macleaya cordata extract (MCE) and Bacillus could improve the laying performance and health of laying hens better. METHODS A total of 360 29-week-old Jingbai laying hens were randomly divided into 4 treatments: control group (basal diet), MCE group (basal diet + MCE), Probiotics Bacillus Compound (PBC) group (basal diet + compound Bacillus), MCE + PBC group (basal diet + MCE + compound Bacillus). The feeding experiment lasted for 42 d. RESULTS The results showed that the laying rate and the average daily egg mass in the MCE + PBC group were significantly higher than those in the control group (P < 0.05) and better than the MCE and PBC group. Combination of MCE and Bacillus significantly increased the content of follicle-stimulating hormone (FSH) in the serum and up-regulated the expression of related hormone receptor gene (estrogen receptor-β, FSHR and luteinizing hormone/choriogonadotropin receptor) in the ovary of laying hens (P < 0.05). In the MCE + PBC group, the mRNA expressions of zonula occluden-1, Occludin and mucin-2 in jejunum was increased and the intestinal epithelial barrier detected by transmission electron microscopy was enhanced compared with the control group (P < 0.05). In addition, compared with the control group, combination of MCE and Bacillus significantly increased the total antioxidant capacity and catalase activity (P < 0.05), and down-regulated the mRNA expressions of inflammation-related genes (interleukin-1β and tumor necrosis factor-α) as well as apoptosis-related genes (Caspase 3, Caspase 8 and P53) (P < 0.05). The concentration of acetic acid and butyric acid in the cecum content of laying hens in the MCE + PBC group was significantly increased compared with the control group (P < 0.05). CONCLUSIONS Collectively, dietary supplementation of 600 μg/kg MCE and 5 × 108 CFU/kg compound Bacillus can improve laying performance by improving microbiota to enhance antioxidant capacity and intestinal barrier, regulate reproductive hormones and the concentration of cecal short-chain fatty acids of laying hens, and the combined effect of MCE and Bacillus is better than that of single supplementation.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Peng Zou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Shujie Xu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Qi Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Xiang Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Li Tang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Baikui Wang
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Qian Jin
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Dongyou Yu
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Yongyou Industry Park, Sanya, 572000 China
| |
Collapse
|
10
|
Probiotics as Alternatives to Antibiotics for the Prevention and Control of Necrotic Enteritis in Chickens. Pathogens 2022; 11:pathogens11060692. [PMID: 35745546 PMCID: PMC9229159 DOI: 10.3390/pathogens11060692] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Necrotic enteritis (NE) in poultry is an economically important disease caused by Clostridium perfringens type A bacteria. A global trend on restricting the use of antibiotics as feed supplements in food animal production has caused a spike in the NE incidences in chickens, particularly in broiler populations. Amongst several non-antibiotic strategies for NE control tried so far, probiotics seem to offer promising avenues. The current review focuses on studies that have evaluated probiotic effects on C. perfringens growth and NE development. Several probiotic species, including Lactobacillus, Enterococcus, Bacillus, and Bacteroides bacteria as well as some yeast species have been tested in chickens against C. perfringens and NE development. These findings have shown to improve bird performance, reduce C. perfringens colonization and NE-associated pathology. The underlying probiotic mechanisms of NE control suggest that probiotics can help maintain a healthy gut microbial balance by modifying its composition, improve mucosal integrity by upregulating expression of tight-junction proteins, and modulate immune responses by downregulating expression of inflammatory cytokines. Collectively, these studies indicate that probiotics can offer a promising platform for NE control and that more investigations are needed to study whether these experimental probiotics can effectively prevent NE in commercial poultry operational settings.
Collapse
|
11
|
He W, Goes EC, Wakaruk J, Barreda DR, Korver DR. A Poultry Subclinical Necrotic Enteritis Disease Model Based on Natural Clostridium perfringens Uptake. Front Physiol 2022; 13:788592. [PMID: 35795645 PMCID: PMC9251903 DOI: 10.3389/fphys.2022.788592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Necrotic enteritis (NE) in poultry is an opportunistic infection caused by Clostridium perfringens. Well-known as a multifactorial disease, NE development is under the influence of a wide range of environmental risk factors that promote the proliferation of pathogenic C. perfringens at the expense of nonpathogenic strains. Current in vivo NE challenge models typically incorporate pre-exposure to disease risk factors, in combination with exogenous C. perfringens inoculation. Our goal was to enhance current models using a natural uptake of C. perfringens from the barn environment to produce a subclinical infection. We incorporated access to litter, coccidial exposure (either 10× or 15× of the manufacturer-recommended Coccivac B52 Eimeria vaccine challenge; provided unspecified doses of E. acervulina, E. mivati, E. tenella, and two strains of E. maxima), feed composition, and feed withdrawal stress, and achieved the commonly observed NE infection peak at 3 weeks post-hatch. NE severity was evaluated based on gut lesion pathology, clinical signs, and mortality rate. Under cage-reared conditions, 15× coccidial vaccine-challenged birds showed overall NE lesion prevalence that was 8-fold higher than 10× coccidial vaccine-challenged birds. NE-associated mortality was observed only in a floor-reared flock after a 15× coccidial vaccine challenge.
Collapse
Affiliation(s)
- Wanwei He
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Emanuele C. Goes
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jeremy Wakaruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Daniel R. Barreda, ; Douglas R. Korver,
| | - Douglas R. Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Daniel R. Barreda, ; Douglas R. Korver,
| |
Collapse
|
12
|
Swaggerty CL, Byrd JA, Arsenault RJ, Perry F, Johnson CN, Genovese KJ, He H, Kogut MH, Piva A, Grilli E. A blend of microencapsulated organic acids and botanicals reduces necrotic enteritis via specific signaling pathways in broilers. Poult Sci 2022; 101:101753. [PMID: 35240358 PMCID: PMC8892003 DOI: 10.1016/j.psj.2022.101753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Necrotic enteritis (NE) is a devastating disease that has seen a resurgence of cases following the removal of antibiotics from feed resulting in financial loss and significant animal health concerns across the poultry industry. The objective was to evaluate the efficacy of a microencapsulated blend of organic (25% citric and 16.7% sorbic) acids and botanicals (1.7% thymol and 1% vanillin [AviPlusP]) to reduce clinical NE and determine the signaling pathways associated with any changes. Day-of-hatch by-product broiler breeder chicks were randomly assigned to a control (0) or supplemented (500 g/MT) diet (n = 23-26) and evaluated in a NE challenge model (n = 3). Birds were administered 2X cocci vaccine on d 14 and challenged with a cocktail of Clostridium perfringens strains (107) on d 17 to 19. On d 20 to 21 birds were weighed, euthanized, and scored for NE lesions. Jejunal tissue was collected for kinome analysis using an immuno-metabolism peptide array (n = 5; 15/treatment) to compare tissue from supplement-fed birds to controls. Mortality and weight were analyzed using Student's t test and lesion scores analyzed using F-test two-sample for variances (P < 0.05). The kinome data was analyzed using PIIKA2 peptide array analysis software and fold-change between control and treated groups determined. Mortality in the supplemented group was 47.4% and 70.7% in controls (P = 0.004). Lesions scores were lower (P = 0.006) in supplemented birds (2.47) compared to controls (3.3). Supplement-fed birds tended (P = 0.19) to be heavier (848.6 g) than controls (796.2 g). Kinome analysis showed T cell receptor, TNF and NF-kB signaling pathways contributed to the improvements seen in the supplement-fed birds. The following peptides were significant (P < 0.05) in all 3 pathways: CHUK, MAP3K14, MAP3K7, and NFKB1 indicating their importance. Additionally, there were changes to IL6, IL10, and IFN- γ mRNA expression in tissue between control- and supplement-fed chickens. In conclusion, the addition of a microencapsulated blend of organic acids and botanicals to a broiler diet reduced the clinical signs of NE that was mediated by specific immune-related pathways.
Collapse
Affiliation(s)
- Christina L Swaggerty
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA.
| | - J Allen Byrd
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Famatta Perry
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Casey N Johnson
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Kenneth J Genovese
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Haiqi He
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Michael H Kogut
- U.S. Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Andrea Piva
- DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy; Vetagro S.p.A., Reggio Emilia, Italy
| | - Ester Grilli
- DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy; Vetagro Inc., Chicago, IL, USA
| |
Collapse
|
13
|
Abd El-Hack ME, El-Saadony MT, Elbestawy AR, El-Shall NA, Saad AM, Salem HM, El-Tahan AM, Khafaga AF, Taha AE, AbuQamar SF, El-Tarabily KA. Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives – a comprehensive review. Poult Sci 2022; 101:101590. [PMID: 34953377 PMCID: PMC8715378 DOI: 10.1016/j.psj.2021.101590] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023] Open
Abstract
In line with the substantial increase in the broiler industry worldwide, Clostridium perfringens-induced necrotic enteritis (NE) became a continuous challenge leading to high economic losses, especially after banning antimicrobial growth promoters in feeds by many countries. The disease is distributed worldwide in either clinical or subclinical form, causing a reduction in body weight or body weight gain and the feed conversion ratio, impairing the European Broiler Index or European Production Efficiency Factor. There are several predisposing factors in the development of NE. Clinical signs varied from inapparent signs in case of subclinical infection (clostridiosis) to obvious enteric signs (morbidity), followed by an increase in mortality level (clostridiosis or clinical infection). Clinical and laboratory diagnoses are based on case history, clinical signs, gross and histopathological lesions, pathogenic agent identification, serological testing, and molecular identification. Drinking water treatment is the most common route for the administration of several antibiotics, such as penicillin, bacitracin, and lincomycin. Strict hygienic management practices in the farm, careful selection of feed ingredients for ration formulation, and use of alternative antibiotic feed additives are all important in maintaining broiler efficiency and help increase the profitability of broiler production. The current review highlights NE caused by C. perfringens and explains the advances in the understanding of C. perfringens virulence factors involved in the pathogenesis of NE with special emphasis on the use of available antibiotic alternatives such as herbal extracts and essential oils as well as vaccines for the control and prevention of NE in broiler chickens.
Collapse
|
14
|
Specific Secondary Bile Acids Control Chicken Necrotic Enteritis. Pathogens 2021; 10:pathogens10081041. [PMID: 34451506 PMCID: PMC8427939 DOI: 10.3390/pathogens10081041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Necrotic enteritis (NE), mainly induced by the pathogens of Clostridium perfringens and coccidia, causes huge economic losses with limited intervention options in the poultry industry. This study investigated the role of specific bile acids on NE development. Day-old broiler chicks were assigned to six groups: noninfected, NE, and NE with four bile diets of 0.32% chicken bile, 0.15% commercial ox bile, 0.15% lithocholic acid (LCA), or 0.15% deoxycholic acid (DCA). The birds were infected with Eimeria maxima at day 18 and C. perfringens at day 23 and 24. The infected birds developed clinical NE signs. The NE birds suffered severe ileitis with villus blunting, crypt hyperplasia, epithelial line disintegration, and massive immune cell infiltration, while DCA and LCA prevented the ileitis histopathology. NE induced severe body weight gain (BWG) loss, while only DCA prevented NE-induced BWG loss. Notably, DCA reduced the NE-induced inflammatory response and the colonization and invasion of C. perfringens compared to NE birds. Consistently, NE reduced the total bile acids in the ileal digesta, while dietary DCA and commercial bile restored it. Together, this study showed that DCA and LCA reduced NE histopathology, suggesting that secondary bile acids, but not total bile acid levels, play an essential role in controlling the enteritis.
Collapse
|
15
|
Emami NK, Dalloul RA. Centennial Review: Recent developments in host-pathogen interactions during necrotic enteritis in poultry. Poult Sci 2021; 100:101330. [PMID: 34280643 PMCID: PMC8318987 DOI: 10.1016/j.psj.2021.101330] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023] Open
Abstract
Necrotic enteritis (NE) is a significant enteric disease in commercial poultry with considerable economic effect on profitability manifested by an estimated $6 billion in annual losses to the global industry. NE presents a unique challenge, being a complex enteric disease that often leads to either clinical (acute) or subclinical (chronic) form. The latter typically results in poor performance (reduced feed intake, weight gain and eventually higher feed conversion ratio [FCR]) with low mortality rates, and represents the greatest economic impact on poultry production. The use of antibiotic growth promoters (AGPs) has been an effective tool in protecting birds from enteric diseases by maintaining enteric health and modifying gut microbiota, thus improving broilers’ production efficiency and overall health. The removal of AGPs presented the poultry industry with several challenges, including reduced bird health and immunity as well as questioning the safety of poultry products. Consequently, research on antibiotic alternatives that can support gut health was intensified. Probiotics, prebiotics, essential oils, and organic acids were among various additives that have been tested for their efficacy against NE with some being effective but not to the level of AGPs. The focus of this review is on the relationship between NE pathogenesis, microbiome, and host immune responses, along with references to recent reviews addressing production aspects of NE. With a comprehensive understanding of these dynamic changes, new and programmed strategies could be developed to make use of the current products more effectively or build a stepping stone toward the development of a new generation of supplements.
Collapse
Affiliation(s)
- Nima K Emami
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Rami A Dalloul
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
16
|
Das Q, Shay J, Gauthier M, Yin X, Hasted TL, Ross K, Julien C, Yacini H, Kennes YM, Warriner K, Marcone MF, Diarra MS. Effects of Vaccination Against Coccidiosis on Gut Microbiota and Immunity in Broiler Fed Bacitracin and Berry Pomace. Front Immunol 2021; 12:621803. [PMID: 34149685 PMCID: PMC8213364 DOI: 10.3389/fimmu.2021.621803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Feeding practices have been found to influence gut microbiota which play a major role in immunity of poultry. In the present study, changes in cecal microbiota and humoral responses resulting in the 55 ppm bacitracin (BACI), 1% each of cranberry (CP1) and wild blueberry (BP1) pomace alone or in combination (CP+BP) feeding in broiler Cobb 500 vaccinated or not against coccidiosis were investigated. In the non-vaccinated group, no significant treatment effects were observed on performance parameters. Vaccination significantly affected bird's performance parameters particularly during the growing phase from 10 to 20 days of age. In general, the prevalence of coccidiosis and necrotic enteritis (NE) was reduced by vaccination (P < 0.05). BACI-treated birds showed low intestinal lesion scores, and both CP1 and BP1 feed supplementations reduced Eimeria acervulina and Clostridium perfringens incidences similar to BACI. Vaccination induced change in serum enzymes, minerals, and lipid levels in 21-day old birds while, levels of triglyceride (TRIG) and non-esterified fatty acids (NEFA) were higher (P < 0.05) in CP1 treated non-vaccinated group than in the control. The levels of NEFA were lower in BACI- and CP1-fed birds than in the control in non-vaccinated day 28 old birds. The highest levels of all estimated three immunoglobulins (IgY, IgM, and IgA) were found in the vaccinated birds. Metagenomics analysis of the cecal bacterial community in 21-day old birds showed the presence of Firmicutes (90%), Proteobacteria (5%), Actinobacteria (2%), and Bacteroidetes (2%). In the vaccinated group, an effect of BACI was noted on Proteobacteria (P = 0.03). Vaccination and/or dietary treatments influenced the population of Lactobacillaceae, Enterobacteriaceae, Clostridiaceae, and Streptococcaceae which were among the most abundant families. Overall, this study revealed that besides their beneficial effects on performance, alike bacitracin, berry pomaces in poultry feed have profound impacts on the chicken cecal microbiota and blood metabolites that could be influenced by vaccination against coccidiosis.
Collapse
Affiliation(s)
- Quail Das
- Department of Food Science, University of Guelph, Guelph, ON, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Julie Shay
- Ottawa Laboratory (Carling) - Research and Development, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Martin Gauthier
- Biological Informatics Centre of Excellence, AAFC, Saint-Hyacinthe, QC, Canada
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Teri-Lyn Hasted
- Department of Food Science, University of Guelph, Guelph, ON, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Kelly Ross
- Summerland Research and Development Centre, AAFC, Summerland, BC, Canada
| | - Carl Julien
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Hassina Yacini
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Yan Martel Kennes
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Massimo F Marcone
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| |
Collapse
|
17
|
Reda FM, El-Saadony MT, El-Rayes TK, Farahat M, Attia G, Alagawany M. Dietary effect of licorice (Glycyrrhiza glabra) on quail performance, carcass, blood metabolites and intestinal microbiota. Poult Sci 2021; 100:101266. [PMID: 34225203 PMCID: PMC8264150 DOI: 10.1016/j.psj.2021.101266] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022] Open
Abstract
This study aimed to assess the impacts of licorice (Glycyrrhiza glabra) on the growth performance, carcass traits, intestinal microbiota, liver and kidney functions, immunity, oxidative status, and lipid profile of Japanese quails. A total of 200 one-week-old unsexed Japanese quails with an average initial body weight of 26.24 ± 0.2 g were randomly distributed into 5 equal groups of 40 birds and further subdivided into 5 replicates. The first (control) group was fed a diet without any licorice, while licorice powder was added at levels of 250, 500, 750, and 1000 mg per kg diet in the second, third, fourth, and fifth groups, respectively. At the age of 3 wk, the group of quail fed on a diet supplemented with 750 and 1000 mg licorice/kg of diet gained the highest body weight (BW) and daily body weight (DBW), while attaining the lowest feed conversion ratio (FCR) compared to other groups. Meanwhile, groups fed diets with licorice at levels of 0 and 250 mg/kg showed the highest feed intake. After the 5-wk feeding trial, the highest BW and DBW values, and the lowest FCR were recorded in the group fed with 750 mg licorice/kg diet. The different treatments produced no significant differences (P > 0.05) in quail carcass characteristics, including percentages of carcass, liver, gizzard, heart, giblets, and dressing. The blood of the group fed a 750 mg licorice diet had higher contents of total protein and GLOB, while its contents of A/G%, lactate dehydrogenase (LDH), total cholesterol, triglyceride (TG), and low density lipoprotein (LDL) were lower. Apart from the high level of licorice (1000 mg/kg), the MDA level was linearly and quadratically (P = 0.0413 and 0.001) decreased with different licorice groups, while superoxide dismutase (SOD), total antioxidant capacity (TAC), immunoglobulin G (IgG), and M (IgM) were quadratically increased when compared to the control group. Licorice supplementation resulted in marked reductions in the number of total bacteria, coliforms, E. coli, and Salmonella, compared to those in the control. In conclusion, the inclusion of licorice at levels of 750 and 1000 mg/kg into the diet of Japanese quail enhances the animal's performance, immunity, antioxidant capacity, and maintains a healthy gut microbiota.
Collapse
Affiliation(s)
- F M Reda
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - M T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - T K El-Rayes
- Animal Production Department, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - M Farahat
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - G Attia
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - M Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
18
|
Sallam EA, Mohammed LS, Elbasuni SS, Azam AE, Soliman MM. Impacts of Microbial based Therapy on Growth Performance, Intestinal Health, Carcass Traits and Economic Efficiency of Clostridium perfringens-Infected Cobb and Arbor Acres Broilers. Vet Med Sci 2021; 7:773-791. [PMID: 33720539 PMCID: PMC8136931 DOI: 10.1002/vms3.412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023] Open
Abstract
The poultry farms need a safe and effective alternative for antibiotics that can counteract the negative impacts of necrotic enteritis (NE), which causes severe mortalities and economic losses. The current study was aimed to examine the influence of antibiotic (Flagymox) and the microbial‐based administration on carcass traits in Clostridium(C.)perfringens‐infected Cobb and Arbor Acres broilers. A total number of 360 Cobb and Arbor Acres broiler chicks (180 numbers per breed) were allocated to four groups; negative control group (without any treatments); positive control group (administration of C. perfringens at the rate of 1 × 109cfu/bird via crop gavage twice daily from day 16 to 18 post‐hatch); C. perfringens challenge plus antibiotic (Flagymox®) group, and Clostridiumperfringens challenge plus microbial‐based treatment (Big‐lactoα®) group. The results indicated that the Flagymox and Big‐lactoα treated Cobb breed group achieved a significant increase in their body weight (BW) than the positive control group at the third week post‐infection. Also, the Arbor Acres breed gained significantly higher weight compared to the Cobb breed at the third week. Total weight gain (TWG) from 0 to the fifth week in the Cobb and Arbor Acres breeds were higher in the groups treated with Flagymox and Big‐lactoα compared to the birds challenged with C. perfringens without any treatment, thus, increasing the total return (TR) in the treated groups. Economic efficiency showed no significant differences (p < .05) between the treatment groups of both the breeds. Although the treatment cost of Flagymox is higher than the microbial‐based treatment (0.86 versus 0.35 LE), there were no mortalities reported in the microbial‐based groups in both the breeds resulting in significantly low losses compared to the Flagymox treated groups. The groups treated with the microbial‐based products in both breeds were superior in dressing percentage (75.16 and 77.06% for Cobb and Arbor Acres, respectively) compared to that of the other groups. In conclusion, microbial‐based therapy improved the growth rate, carcass traits, survival rate, and economic efficiency in necrotic enteritis induced in Cobb and Arbor Acres broilers.
Collapse
Affiliation(s)
- Eman A Sallam
- Animal and Poultry Production, Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Liza S Mohammed
- Veterinary Economics and Farm Management, Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Sawsan S Elbasuni
- Avian and Rabbit diseases Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Aya E Azam
- Animal Hygiene and Veterinary Management, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| |
Collapse
|
19
|
Emami NK, White MB, Calik A, Kimminau EA, Dalloul RA. Managing broilers gut health with antibiotic-free diets during subclinical necrotic enteritis. Poult Sci 2021; 100:101055. [PMID: 33744613 PMCID: PMC8005826 DOI: 10.1016/j.psj.2021.101055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/21/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022] Open
Abstract
Necrotic enteritis (NE) caused by Clostridium perfringens is among the most important enteric diseases in poultry production. This study examined the effects of 2 probiotics (Prob) and a synbiotic (Synb) during a naturally occurring NE challenge. On the day of hatch, 1200 Cobb male broilers were randomly allocated to 5 groups (8 pens/treatment, 30 birds/pen) including 1) negative control (NC): corn-soybean meal diet; 2) positive control (PC): NC + 453 g Stafac20/907 kg feed; 3) Prob 1: NC + 453 g Prob 1/907 kg feed; 4) Prob 2: NC + 453 g Prob 2/907 kg feed; and 5) Synb: NC + 453 g Synb/907 kg feed. One day after placement, birds were challenged by a coccidia vaccine to induce NE. Feed intake and body weights were measured on day 8 (NE onset) and end of starter (day 14) and grower (28) periods. On day 8, the small intestines of 3 birds/pen were examined for NE lesions. Ileal mucosal scrapings from one bird/pen were collected on day 8 and day 28 to profile the microbiota using 16S rRNA sequencing. Data were analyzed in JMP or QIIME 2 and significance between treatments identified by LSD or linear discriminant analysis effect size (P < 0.05). The Synb group significantly lowered NE lesion scores on day 8 and reduced day 0-14 mortality by 50% compared with NC. FCR was significantly better in all the groups, whereas ADG was higher in PC, Synb, and Prob 2 groups compared with NC from day 0 to day 28. Lower lesion scores in the Synb group were accompanied by lower relative abundance of Alistipes, ASF356, Faecalibaculum, Lachnospiraceae UCG-001, Muribaculum, Oscillibacter, Parabacteroides, Rikenellaceae RC9 gut group, Ruminococcaceae UCG-014, and Ruminiclostridium 9 compared with NC on day 8. On day 28, relative abundance of Lactobacillus was lower, whereas abundance of Bacteroides, Barnesiella, Butyricicoccus, CHKCI001, Eisenbergiella, Eubacterium hallii group, Helicobacter, Ruminococcaceae UCG-005, Ruminococcus torques group, and Sellimonas was significantly higher in the NC birds than in the Synb and Prob 2 groups. Collectively, these data indicate that during a subclinical naturally occurring NE, supplementation of specific additives could be effective in reducing intestinal lesions and mortality, and improving performance potentially through developing a signature microbial profile in the intestinal mucosal layer.
Collapse
Affiliation(s)
- Nima K Emami
- Avian Immunobiology Laboratory, Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg 24061, USA
| | - Mallory B White
- Avian Immunobiology Laboratory, Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg 24061, USA
| | - Ali Calik
- Avian Immunobiology Laboratory, Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg 24061, USA; Department of Animal Nutrition & Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Turkey
| | - Emily A Kimminau
- Huvepharma, Inc., Technical Service, Peachtree City, GA 30269, USA
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Animal & Poultry Sciences, Virginia Tech, Blacksburg 24061, USA; Department of Poultry Science, University of Georgia, Athens 30602, USA.
| |
Collapse
|
20
|
Khattab AAA, El Basuini MFM, El-Ratel IT, Fouda SF. Dietary probiotics as a strategy for improving growth performance, intestinal efficacy, immunity, and antioxidant capacity of white Pekin ducks fed with different levels of CP. Poult Sci 2020; 100:100898. [PMID: 33518354 PMCID: PMC7936136 DOI: 10.1016/j.psj.2020.11.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 12/26/2022] Open
Abstract
The potential impacts of probiotics on the performance and health status of white Pekin ducks fed with optimal or suboptimal dietary CP were evaluated during the growing period. A total of 180 male white Pekin ducks (14-day-old ducks with an initial weight of 415.65 ± 2.20 g) were randomly divided into 4 experimental groups (45 in each group of 5 replicates) in a 2 × 2 factorial design. The main factors included 2 dietary CP levels (18 or 14%) and dietary probiotic addition (with or without probiotics). The probiotic source was supplemented at 0.2 g per kilogram of diet from a blend of Lactobacillus acidophilus and Lactobacillus casei. The results showed that the diet containing 18% CP and probiotics significantly increases the final and total weight gain. Activities of intestinal enzymes (amylase, lipase, and protease), morphometrics (villus length, goblet cell count, and cryptal depth), and carcass percentage were also increased significantly. Total protein content, lysozyme activity, bactericidal activity, nitro blue tetrazolium levels, alternative complement pathway, superoxide dismutase activity, and catalase activity were significantly increased, whereas glucose, cortisol, and total cholesterol levels were decreased when treated with diet containing 18% CP and probiotics. Conversely, the group treated with diet containing 14% CP without probiotics showed the poorest performance, carcass properties, immune response, and antioxidant potential. In conclusion, probiotic addition to the 14% CP diet improved the performance of white Pekin ducks caused by reduced CP diet to performance due to the 18% CP diet without probiotic supplementation.
Collapse
Affiliation(s)
- Ahmed A A Khattab
- Department of Animal Production, Faculty of Agriculture, Tanta University, 31527 Tanta, Egypt
| | - Mohammed F M El Basuini
- Department of Animal Production, Faculty of Agriculture, Tanta University, 31527 Tanta, Egypt; Faculty of Desert Agriculture, King Salman International University, South Sinai, Egypt.
| | - Ibrahim T El-Ratel
- Department of Poultry Production, Faculty of Agriculture, Damietta University, 34517 Damietta, Egypt
| | - Sara F Fouda
- Department of Poultry Production, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
21
|
Emami NK, Calik A, White MB, Kimminau EA, Dalloul RA. Effect of Probiotics and Multi-Component Feed Additives on Microbiota, Gut Barrier and Immune Responses in Broiler Chickens During Subclinical Necrotic Enteritis. Front Vet Sci 2020; 7:572142. [PMID: 33324697 PMCID: PMC7725796 DOI: 10.3389/fvets.2020.572142] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
The withdrawal of antibiotic growth promoters from poultry feed has increased the risk of necrotic enteritis (NE) outbreaks. This study examined the effects of a probiotic (PROB) or probiotic/prebiotic/essential oil supplement (PPEO) during a subclinical NE challenge. On day (d) of hatch, 960 male broilers were randomized to four groups (8 pens/treatment, 30 birds/pen) including (1) negative control (NC): corn-soybean meal diet; (2) positive control (PC): NC + 20 g Virginiamycin/ton diet; (3) NC + 227 g PROB/ton diet; and (4) NC + 453 g PPEO/ton diet. One d after placement, birds were challenged by a coccidia vaccine to induce NE. Feed intake and body weights were measured on d 8 (NE onset) and end of each feeding period. On d 8, the small intestines of three birds/pen were examined for NE lesions. Jejunum samples and ileal mucosal scrapings from one bird/pen were respectively collected to measure mRNA abundance (d 8 and d 14) and profile the microbiota (d 8 and d 42). Data were analyzed in JMP or QIIME 2 and significance between treatments identified by LSD (P < 0.05). PROB and PPEO had significantly lower mortality (d 0–14) and NE lesion scores compared to NC. Feed conversion ratio was significantly lower in PC, PROB, and PPEO, while average daily gain was higher in PPEO and PC groups compared to NC from d 0–42. On d 8 and d 14, mRNA abundance of claudin-3 was higher in PPEO compared to NC. On d 14, compared to NC, mRNA abundance of sIgA and PGC-1α in PROB and PPEO were lower and higher, respectively. Compared to NC, PPEO increased mTOR abundance on d 14. On d 8, relative abundance of Clostridium sensu stricto 1, Ruminiclostridium9, Prevotellaceae, Prevotellaceae UCG-014, ASF356, and Muribaculaceae was higher in NC compared to PPEO and PROB, while Lactobacillus was lower in NC. Escherichia-Shigella had higher abundance in PC compared to PPEO and PROB. Collectively, these data indicate that during a subclinical naturally occurring NE, supplementation of PROB or PPEO supports performance and reduces intestinal lesions, potentially through modifying tight junction proteins, gut microbiota, immune responses, and cell metabolism.
Collapse
Affiliation(s)
- Nima K Emami
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Ali Calik
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States.,Department of Animal Nutrition & Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Mallory B White
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States
| | | | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, United States.,Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
22
|
Goossens E, Dierick E, Ducatelle R, Van Immerseel F. Spotlight on avian pathology: untangling contradictory disease descriptions of necrotic enteritis and necro-haemorrhagic enteritis in broilers. Avian Pathol 2020; 49:423-427. [PMID: 32208870 DOI: 10.1080/03079457.2020.1747593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Necrotic enteritis (NE) is one of the most detrimental infectious diseases in the modern poultry industry, characterized by necrosis in the small intestine. It is commonly accepted that NetB-producing C. perfringens type G strains are responsible for the disease. However, based on both macroscopic and histopathological observations, two distinct types of NE are observed. To date, both a haemorrhagic form of NE and the type G-associated non-haemorrhagic disease entity are commonly referred to as NE and the results from scientific research are interchangeably used, without distinguishing between the disease entities. Therefore, we propose to rename the haemorrhagic disease entity to necro-haemorrhagic enteritis.
Collapse
Affiliation(s)
- E Goossens
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - E Dierick
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - R Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - F Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
23
|
Khalique A, Zeng D, Shoaib M, Wang H, Qing X, Rajput DS, Pan K, Ni X. Probiotics mitigating subclinical necrotic enteritis (SNE) as potential alternatives to antibiotics in poultry. AMB Express 2020; 10:50. [PMID: 32172398 PMCID: PMC7072080 DOI: 10.1186/s13568-020-00989-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
Subclinical necrotic enteritis (SNE) caused by Clostridium perfringens (CP), is an important disease in chickens, which causes huge economic losses by damaging the intestinal mucosa, decreasing digestion and absorption of nutrients. Use of antibiotics at a sub-therapeutic level as antimicrobial growth promoters in poultry feed prevents the birds from SNE and improves growth. Due to the ban on the use of antibiotics in 2006 as antimicrobial growth promoters have led to the reemergence of the disease. Worldwide numerous studies have been carried out to investigate the alternatives to antibiotics for the prevention of SNE. Possible alternatives to control SNE include probiotics, prebiotics, bacteriophages, essential oils, organic acids, secondary metabolites and other microbial products. Currently, probiotics are most extensively used in poultry production as an alternative to antibiotics. This review summarizes recent insights and experimental evidence on the use of different microorganisms like Bacillus, Lactic acid bacteria, Bifidobacteria, Enterococcus, yeast, etc. as valuable probiotics for prevention of SNE and potential molecular mechanisms responsible for ameliorating effects of probiotics against SNE.
Collapse
|