1
|
Shabaev AV, Savinova OS, Moiseenko KV, Glazunova OA, Fedorova TV. Saprotrophic Wood Decay Ability and Plant Cell Wall Degrading Enzyme System of the White Rot Fungus Crucibulum laeve: Secretome, Metabolome and Genome Investigations. J Fungi (Basel) 2024; 11:21. [PMID: 39852439 PMCID: PMC11766592 DOI: 10.3390/jof11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025] Open
Abstract
The basidiomycete Crucibulum laeve strain LE-BIN1700 (Agaricales, Nidulariaceae) is able to grow on agar media supplemented with individual components of lignocellulose such as lignin, cellulose, xylan, xyloglucan, arabinoxylan, starch and pectin, and also to effectively destroy and digest birch, alder and pine sawdust. C. laeve produces a unique repertoire of proteins for the saccharification of the plant biomass, including predominantly oxidative enzymes such as laccases (family AA1_1 CAZymes), GMC oxidoreductases (family AA3_2 CAZymes), FAD-oligosaccharide oxidase (family AA7 CAZymes) and lytic polysaccharide monooxygenases (family LPMO X325), as well as accompanying acetyl esterases and loosenine-like expansins. Metabolomic analysis revealed that, specifically, monosaccharides and carboxylic acids were the key low molecular metabolites in the C. laeve culture liquids in the experimental conditions. The proportion of monosaccharides and polyols in the total pool of identified compounds increased on the sawdust-containing media. Multiple copies of the family AA1_1, AA3_2, AA7 and LPMOs CAZyme genes, as well as eight genes encoding proteins of the YvrE superfamily (COG3386), which includes sugar lactone lactonases, were predicted in the C. laeve genome. According to metabolic pathway analysis, the litter saprotroph C. laeve can catabolize D-gluconic and D-galacturonic acids, and possibly other aldonic acids, which seems to confer certain ecological advantages.
Collapse
Affiliation(s)
| | | | | | | | - Tatyana V. Fedorova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia; (A.V.S.); (O.S.S.); (K.V.M.); (O.A.G.)
| |
Collapse
|
2
|
Shen JY, Mao FH, Wang Q, Ou PP, Liu JK, Zhao Q, He QL. Efficient genome editing using CRISPR/Cas9 technology and its application for identifying Sesquiterpene synthases involved in the biosynthesis of Steperoxides in Steccherinum ochraceum. Fungal Genet Biol 2024; 175:103944. [PMID: 39592077 DOI: 10.1016/j.fgb.2024.103944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
CRISPR technology has been widely used for gene editing in various species,but the genetic manipulation in basidiomycete mushrooms is still notoriously difficult for unknown endogenous promoters and inefficient DNA delivery. Steccherinum ochraceum is a white rot basidiomycete fungus with abundant secondary metabolites and plays an important ecological role worldwide. To facilitate the study of gene function in S. ochraceum, an effective CRISPR/Cas9 system was successfully developed by identifying highly efficient endogenous promoters, and utilizing the Agrobacterium-transformation method. Two efficient endogenous RNA polymerase II promoters (Psogpd and Psotef1) and one efficient RNA polymerase III promoter (Pu6-d) were identified and characterized, with an editing efficiency of 61.5 % at the ura3 locus. Using this optimized system, the sesquiterpene gene A0064, which could produce 10 possible sesquiterpenes in the heterologous expression system of A. oryzae, was knocked out to obtain A0064 knockout strain S. ochraceum (∆A0064). Steperoxide A could not be detected in S. ochraceum (∆A0064), demonstrating that A0064 was the only enzyme responsible for the biosynthesis of β-chamigrene (the sesquiterpene skeleton of steperoxide A) in S. ochraceum. This efficient system will enable precise targeting and multiplex editing of S. ochraceum genes, facilitating functional studies of genes involved in lignin degradation and natural product biosynthesis in S. ochraceum, and providing some valuable guidance for gene editing in tens of thousands of macrofungi.
Collapse
Affiliation(s)
- Jia-Yu Shen
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Fei-Hong Mao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Qiwen Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Pei-Pei Ou
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ji-Kai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Qunfei Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Qing-Li He
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
3
|
Chen J, Hong K, Ma L, Hao X. Effect of time series on the degradation of lignin by Trametes gibbosa: Products and pathways. Int J Biol Macromol 2024; 281:136236. [PMID: 39366598 DOI: 10.1016/j.ijbiomac.2024.136236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Lignin is the third most abundant organic resource in nature. The utilization of white-rot fungi for wood degradation effectively circumvents environmental pollution associated with chemical treatments, facilitating the benign decomposition of lignin. Trametes gibbosa is a typical white-rot fungus with rapid growth and strong wood decomposition ability. The lignin content decreased from 23.62 mg/mL to 17.05 mg/mL, which decreased by 27 % in 30 days. The activity of manganese peroxidase increased steadily by 9.44 times. The activities of laccase and lignin peroxidase had the same trend of change and reached peaks of 49.88 U/L and 10.43 U/L on the 25th day, respectively. The change in H2O2 content in vivo was opposite to its trend. For FTIR and GC-MS analysis, the fungi attacked the side chain structure of lignin phenyl propane polymer and benzene ring to crack into low molecular weight aromatic compounds. The side chains of low molecular weight aromatic compounds are oxidized, and long-chain carboxylic acids are formed. Additionally, the absorption peak in the vibration region of the benzene ring skeleton became complex, and the structure of the benzene rings changed. In the beginning, fungal growth was inhibited. Fungal autophagy was aggravated. The metal cation binding proteins of fungi were active, and the genes related to detoxification metabolism were upregulated. The newly produced compounds are related to xenobiotic metabolism. The degradation peak focused on the redox process, and the biological function was enriched in the regulation of macromolecular metabolism, lignin metabolism, and oxidoreductase activity acting on diphenols and related substances as donors. Notably, genes encoding key degradation enzymes, including lcc3, lcc4, phenol-2-monooxygenase, 3-hydroxybenzoate-6-hydroxylase, oxalate decarboxylase, and acetyl-CoA oxidase were significantly upregulated. On the 30th day, the N-glycan biosynthesis pathway was significantly enriched in glycan biosynthesis and metabolism. Weighted correlation network analysis was performed. A total of 1452 genes were clustered in the coral1 module, which were most related to lignin degradation. The genes were significantly enriched in oxidoreductase activity, peptidase activity, cell response to stimulation, signal transduction, lignin metabolism, and phenylpropane metabolism, while the rest were concentrated in glucose metabolism. In this study, the lignin degradation process and products were revealed by T. gibbosa. The molecular mechanism of lignin degradation in different stages was explored. The selection of an efficient utilization time of lignin will help to increase the degradation rate of lignin. This study provides a theoretical basis for the biofuel and biochemical production of lignin. SYNOPSIS: Trametes gibbosa degrades lignin in a pollution-free way, improving the utilization of carbon resources in an environmentally friendly spontaneous cycle. The products are the new way towards sustainable development and low-carbon technology.
Collapse
Affiliation(s)
- Jie Chen
- The Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming 650224, China
| | - Kai Hong
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Xin Hao
- The Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
4
|
Psurtseva NV, Kiyashko AA, Senik SV, Shakhova NV, Belova NV. The Conservation and Study of Macromycetes in the Komarov Botanical Institute Basidiomycetes Culture Collection-Their Taxonomical Diversity and Biotechnological Prospects. J Fungi (Basel) 2023; 9:1196. [PMID: 38132796 PMCID: PMC10744906 DOI: 10.3390/jof9121196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Culture collections (CCs) play an important role in the ex situ conservation of biological material and maintaining species and strains, which can be used for scientific and practical purposes. The Komarov Botanical Institute Basidiomycetes Culture Collection (LE-BIN) preserves a large number of original dikaryon strains of various taxonomical and ecological groups of fungi from different geographical regions. Started in the late 1950s for the investigation of Basidiomycetes' biological activity, today, in Russia, it has become a unique specialized macromycetes collection, preserving 3680 strains from 776 species of fungi. The Collection's development is aimed at ex situ conservation of fungal diversity, with an emphasis on preserving rare and endangered species, ectomycorrhizal fungi, and strains useful for biotechnology and medicine. The main methods applied in the collection for maintaining and working with cultures are described, and the results are presented. Some problems for the isolation and cultivation of species are discussed. The taxonomical structure and variety of the strains in the collection fund are analyzed, and they show that the taxonomical diversity of fungi in the LE-BIN is commensurable with the largest CCs in the world. The achievements from the ex situ conservation of the diversity of macromycetes and the main results from the screening and investigation of the collection's strains demonstrate that a number of strains can be prospective producers of enzymes (oxidoreductases and proteases), lipids, and biologically active compounds (terpenoids, phthalides, etc.) for biotechnology and medicine.
Collapse
Affiliation(s)
- Nadezhda V. Psurtseva
- Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia; (A.A.K.); (S.V.S.); (N.V.S.); (N.V.B.)
| | | | | | | | | |
Collapse
|
5
|
Huang SS, Yang HX, He J, Yan BC, Feng T, Liu JK. Steccherins A-D, chamigrane-type sesquiterpenes from the fungus Steccherinum ochraceum with selective inhibition on B lymphocyte proliferation. PHYTOCHEMISTRY 2023; 214:113830. [PMID: 37598992 DOI: 10.1016/j.phytochem.2023.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Four previously undescribed chamigrane sesquiterpenes, namely steccherins A-D, have been isolated from the fungus Steccherinum ochraceum. Their structures were elucidated by extensive spectroscopic analysis, as well as computational methods and single crystal X-ray diffraction. Steccherins A and B possess previously undescribed backbones which might be derived from normal chamigrane sesquiterpenes, especially that steccherin A possesses a spiro[5.6]dodecane carbon skeleton via a ring-rearrangement. Steccherins A, C, and D showed immunosuppressive activity with IC50 values ranging from 6.2 to 37.8 μM. The data suggested that these chamigrane sesquiterpenes have potential selective inhibition on LPS-induced B lymphocyte proliferation.
Collapse
Affiliation(s)
- Shan-Shan Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Hui-Xiang Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Juan He
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Bing-Chao Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
6
|
Moiseenko KV, Glazunova OA, Savinova OS, Fedorova TV. Exoproteomic Study and Transcriptional Responses of Laccase and Ligninolytic Peroxidase Genes of White-Rot Fungus Trametes hirsuta LE-BIN 072 Grown in the Presence of Monolignol-Related Phenolic Compounds. Int J Mol Sci 2023; 24:13115. [PMID: 37685920 PMCID: PMC10487439 DOI: 10.3390/ijms241713115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Being an abundant renewable source of aromatic compounds, lignin is an important component of future bio-based economy. Currently, biotechnological processing of lignin through low molecular weight compounds is one of the conceptually promising ways for its valorization. To obtain lignin fragments suitable for further inclusion into microbial metabolism, it is proposed to use a ligninolytic system of white-rot fungi, which mainly comprises laccases and peroxidases. However, laccase and peroxidase genes are almost always represented by many non-allelic copies that form multigene families within the genome of white-rot fungi, and the contributions of exact family members to the overall process of lignin degradation has not yet been determined. In this article, the response of the Trametes hirsuta LE-BIN 072 ligninolytic system to the presence of various monolignol-related phenolic compounds (veratryl alcohol, p-coumaric acid, vanillic acid, and syringic acid) in culture media was monitored at the level of gene transcription and protein secretion. By showing which isozymes contribute to the overall functioning of the ligninolytic system of the T. hirsuta LE-BIN 072, the data obtained in this study will greatly contribute to the possible application of this fungus and its ligninolytic enzymes in lignin depolymerization processes.
Collapse
Affiliation(s)
| | - Olga A. Glazunova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia; (K.V.M.); (O.S.S.); (T.V.F.)
| | | | | |
Collapse
|
7
|
Savinova OS, Shabaev AV, Glazunova OA, Eremin SA, Fedorova TV. Biodestruction of Phthalic Acid Esters by White Rot Fungi. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822050143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Shabaev AV, Moiseenko KV, Glazunova OA, Savinova OS, Fedorova TV. Comparative Analysis of Peniophora lycii and Trametes hirsuta Exoproteomes Demonstrates “Shades of Gray” in the Concept of White-Rotting Fungi. Int J Mol Sci 2022; 23:ijms231810322. [PMID: 36142233 PMCID: PMC9499651 DOI: 10.3390/ijms231810322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
White-rot basidiomycete fungi are a unique group of organisms that evolved an unprecedented arsenal of extracellular enzymes for an efficient degradation of all components of wood such as cellulose, hemicelluloses and lignin. The exoproteomes of white-rot fungi represent a natural enzymatic toolbox for white biotechnology. Currently, only exoproteomes of a narrow taxonomic group of white-rot fungi—fungi belonging to the Polyporales order—are extensively studied. In this article, two white-rot fungi, Peniophora lycii LE-BIN 2142 from the Russulales order and Trametes hirsuta LE-BIN 072 from the Polyporales order, were compared and contrasted in terms of their enzymatic machinery used for degradation of different types of wood substrates—alder, birch and pine sawdust. Our findings suggested that the studied fungi use extremely different enzymatic systems for the degradation of carbohydrates and lignin. While T. hirsuta LE-BIN 072 behaved as a typical white-rot fungus, P. lycii LE-BIN 2142 demonstrated substantial peculiarities. Instead of using cellulolytic and hemicellulolytic hydrolytic enzymes, P. lycii LE-BIN 2142 primarily relies on oxidative polysaccharide-degrading enzymes such as LPMO and GMC oxidoreductase. Moreover, exoproteomes of P. lycii LE-BIN 2142 completely lacked ligninolytic peroxidases, a well-known marker of white-rot fungi, but instead contained several laccase isozymes and previously uncharacterized FAD-binding domain-containing proteins.
Collapse
|
9
|
Moiseenko KV, Glazunova OA, Savinova OS, Vasina DV, Zherebker AY, Kulikova NA, Nikolaev EN, Fedorova TV. Relation between lignin molecular profile and fungal exo-proteome during kraft lignin modification by Trametes hirsuta LE-BIN 072. BIORESOURCE TECHNOLOGY 2021; 335:125229. [PMID: 34010738 DOI: 10.1016/j.biortech.2021.125229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 05/11/2023]
Abstract
The process of kraft lignin modification by the white-rot fungus Trametes hirsuta was investigated using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS), and groups of systematically changing compounds were delineated. In the course of cultivation, fungus tended to degrade progressively more reduced compounds and produced more oxidized ones. However, this process was not gradual - the substantial discontinuity was observed between 6th and 10th days of cultivation. Simultaneously, the secretion of ligninolytic peroxidases by the fungus was changing in a cascade manner - new isoenzymes were added to the mixture of the already secreted ones, and once new isoenzyme appeared both its relative quantity and number of isoforms increased as cultivation proceeded. It was proposed, that the later secreted peroxidases (MnP7 and MnP1) possess higher substrate affinity for some phenolic compounds and act in more specialized manner than the early secreted ones (MnP5 and VP2).
Collapse
Affiliation(s)
- Konstantin V Moiseenko
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia.
| | - Olga A Glazunova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia
| | - Olga S Savinova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia
| | - Daria V Vasina
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia
| | | | - Natalia A Kulikova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia; Department of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny N Nikolaev
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143025, Russia
| | - Tatiana V Fedorova
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia
| |
Collapse
|
10
|
Purification and Characterization of Two Novel Laccases from Peniophora lycii. J Fungi (Basel) 2020; 6:jof6040340. [PMID: 33291231 PMCID: PMC7762197 DOI: 10.3390/jof6040340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/09/2023] Open
Abstract
Although, currently, more than 100 laccases have been purified from basidiomycete fungi, the majority of these laccases were obtained from fungi of the Polyporales order, and only scarce data are available about the laccases from other fungi. In this article, laccase production by the white-rot basidiomycete fungus Peniophora lycii, belonging to the Russulales order, was investigated. It was shown that, under copper induction, this fungus secreted three different laccase isozymes. Two laccase isozymes—Lac5 and LacA—were purified and their corresponding nucleotide sequences were determined. Both purified laccases were relatively thermostable with periods of half-life at 70 °C of 10 and 8 min for Lac5 and LacA, respectively. The laccases demonstrated the highest activity toward ABTS (97 U·mg−1 for Lac5 and 121 U·mg−1 for LacA at pH 4.5); Lac5 demonstrated the lowest activity toward 2,6-DMP (2.5 U·mg−1 at pH 4.5), while LacA demonstrated this towards gallic acid (1.4 U·mg−1 at pH 4.5). Both Lac5 and LacA were able to efficiently decolorize such dyes as RBBR and Bromcresol Green. Additionally, phylogenetic relationships among laccases of Peniophora spp. were reconstructed, and groups of orthologous genes were determined. Based on these groups, all currently available data about laccases of Peniophora spp. were systematized.
Collapse
|
11
|
Moiseenko K, Glazunova O, Shakhova N, Savinova O, Vasina D, Tyazhelova T, Psurtseva N, Fedorova T. Data on the genome analysis of the wood-rotting fungus Steccherinum ochraceum LE-BIN 3174. Data Brief 2020; 29:105169. [PMID: 32055659 PMCID: PMC7005497 DOI: 10.1016/j.dib.2020.105169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/30/2019] [Accepted: 01/15/2020] [Indexed: 12/03/2022] Open
Abstract
In the present article, we report data on the whole-genome sequencing of wood-rotting (white-rot) fungus Steccherinum ochraceum LE-BIN 3174. The S. ochraceum LE-BIN 3174 genome consists of 770 scaffolds (N50 = 62,812 bp) with the total length of assembly ∼35 Mb. The structural annotation of the genome resulted in the prediction of 12,441 gene models, among which 181 were models of tRNA-coding genes, and 12,260 - protein-coding genes. The protein-coding genes were annotated with different databases (Pfam, InterPro, eggNOG, dbCAN, and MEROPS). The whole genome sequence and functional annotation provide an important information for the deep investigation of biochemical processes that take place during the late stages of wood decomposition by Basidiomycetes. The Whole Genome project of S. ochraceum LE-BIN 3174 had been deposited at DDBJ/ENA/GenBank under the accession RWJN00000000. The version described in this work is version RWJN00000000.1. For further interpretation of the data provided in this article, please refer to the research article "Fungal Adaptation to the Advanced Stages of Wood Decomposition: Insights from the Steccherinum ochraceum" [1].
Collapse
Affiliation(s)
- Konstantin Moiseenko
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow, 119071, Russian Federation
| | - Olga Glazunova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow, 119071, Russian Federation
| | - Natalia Shakhova
- Komarov Botanical Institute of the Russian Academy of Sciences, Professor Popov St. 2, St. Petersburg, 197376, Russian Federation
| | - Olga Savinova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow, 119071, Russian Federation
| | - Daria Vasina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow, 119071, Russian Federation
| | - Tatiana Tyazhelova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin St. 3, Moscow, 117809, Russian Federation
| | - Nadezhda Psurtseva
- Komarov Botanical Institute of the Russian Academy of Sciences, Professor Popov St. 2, St. Petersburg, 197376, Russian Federation
| | - Tatiana Fedorova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow, 119071, Russian Federation
| |
Collapse
|