1
|
Lappe-Oliveras P, Avitia M, Sánchez-Robledo SD, Castillo-Plata AK, Pedraza L, Baquerizo G, Le Borgne S. Genotypic and Phenotypic Diversity of Kluyveromyces marxianus Isolates Obtained from the Elaboration Process of Two Traditional Mexican Alcoholic Beverages Derived from Agave: Pulque and Henequen ( Agave fourcroydes) Mezcal. J Fungi (Basel) 2023; 9:795. [PMID: 37623566 PMCID: PMC10455534 DOI: 10.3390/jof9080795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Seven Kluyveromyces marxianus isolates from the elaboration process of pulque and henequen mezcal were characterized. The isolates were identified based on the sequences of the D1/D2 domain of the 26S rRNA gene and the internal transcribed spacer (ITS-5.8S) region. Genetic differences were found between pulque and henequen mezcal isolates and within henequen mezcal isolates, as shown by different branching patterns in the ITS-5.8S phylogenetic tree and (GTG)5 microsatellite profiles, suggesting that the substrate and process selective conditions may give rise to different K. marxianus populations. All the isolates fermented and assimilated inulin and lactose and some henequen isolates could also assimilate xylose and cellobiose. Henequen isolates were more thermotolerant than pulque ones, which, in contrast, presented more tolerance to the cell wall-disturbing agent calcofluor white (CFW), suggesting that they had different cell wall structures. Additionally, depending on their origin, the isolates presented different maximum specific growth rate (µmax) patterns at different temperatures. Concerning tolerance to stress factors relevant for lignocellulosic hydrolysates fermentation, their tolerance limits were lower at 42 than 30 °C, except for glucose and furfural. Pulque isolates were less tolerant to ethanol, NaCl, and Cd. Finally, all the isolates could produce ethanol by simultaneous saccharification and fermentation (SSF) of a corncob hydrolysate under laboratory conditions at 42 °C.
Collapse
Affiliation(s)
- Patricia Lappe-Oliveras
- Laboratorio de Micología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - Morena Avitia
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - Sara Darinka Sánchez-Robledo
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Avenida Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Ciudad de México 05348, Mexico; (S.D.S.-R.); (A.K.C.-P.)
| | - Ana Karina Castillo-Plata
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Avenida Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Ciudad de México 05348, Mexico; (S.D.S.-R.); (A.K.C.-P.)
| | - Lorena Pedraza
- Departamento de Ingeniería Química, Industrial y de Alimentos, Universidad Iberoamericana CDMX, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, Ciudad de México 01219, Mexico;
| | - Guillermo Baquerizo
- Instituto de Investigaciones en Medio Ambiente Xabier Gorostiaga S.J., Universidad Iberoamericana Puebla, Boulevard del Niño Poblano 2901, Reserva Territorial Atlixcáyotl, San Andrés Cholula 72810, Puebla, Mexico;
| | - Sylvie Le Borgne
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Avenida Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Ciudad de México 05348, Mexico
| |
Collapse
|
2
|
Patel AK, Singhania RR, Albarico FPJB, Pandey A, Chen CW, Dong CD. Organic wastes bioremediation and its changing prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153889. [PMID: 35181362 DOI: 10.1016/j.scitotenv.2022.153889] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 05/21/2023]
Abstract
Increasing inappropriate anthropogenic activities and industrialization have resulted in severe environmental pollution worldwide. Their effective treatment is vital for general health concerns. Depending on the characteristics of pollutants, the severity of pollution may differ. For sustainable treatment of polluted environments, bioremediation is accepted as the most efficient, economical, and environmentally friendly method hence largely preferred. However, every bioremediation technique has its own unique advantages and limitations due to its defined applications criteria. In bioremediation, microorganisms play a decisive role in detoxification by degrading, mineralizing and accumulating various forms of harmful and biodegradable pollutants from the surroundings and transforming them into less lethal forms. Bioremediation is performed ex-situ or in-situ, based on location of polluted site as well as characteristics, type and strength of the pollutants. Furthermore, the most popular methodologies for bioremediation include bioaugmentation, biostimulation, bioattenuation among others which depend on the prevailing environmental factors into the microbial system. Implementing them appropriately and effectively under ex-situ or in-situ method is extremely important not only for obtaining efficient treatment but also for the best economic, environmental, and social impacts. Therefore, this review aims to analyze various bioremediation methods for organic pollutants remediation from soil/sediments and wastewater, their strength, limitation, and insights for the selection of appropriate bioremediation techniques based on nature, types, degree, and location of the pollution. The novelty aspect of the article is to give updates on several key supporting technologies which have recently emerged and exhibited great potential to enhance the present bioremediation efficiency such as nanobubble, engineered biochar, mixotrophic microalgae, nanotechnology etc. Moreover, amalgamation of these technologies with existing bioremediation facilities are significantly changing the scenario and scope of environmental remediation towards sustainable bioremediation.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India.
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Frank Paolo Jay B Albarico
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Fisheries and Marine Research Station (FaMaRS), Fisheries and Marine Sciences Department, College of Fisheries and Allied Sciences, Northern Negros State College of Science and Technology, Sagay City 6122, Philippines
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
3
|
Tomé LC, Santos DMF, Velizarov S, Coelhoso IM, Mendes A, Crespo JG, de Pinho MN. Overview of Membrane Science and Technology in Portugal. MEMBRANES 2022; 12:197. [PMID: 35207118 PMCID: PMC8877918 DOI: 10.3390/membranes12020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/10/2022]
Abstract
Membrane research in Portugal is aligned with global concerns and expectations for sustainable social development, thus progressively focusing on the use of natural resources and renewable energy. This review begins by addressing the pioneer work on membrane science and technology in Portugal by the research groups of Instituto Superior Técnico-Universidade de Lisboa (IST), NOVA School of Science and Technology-Universidade Nova de Lisboa (FCT NOVA) and Faculdade de Engenharia-Universidade do Porto (FEUP) aiming to provide an historical perspective on the topic. Then, an overview of the trends and challenges in membrane processes and materials, mostly in the last five years, involving Portuguese researchers, is presented as a contribution to a more sustainable water-energy-material-food nexus.
Collapse
Affiliation(s)
- Liliana C. Tomé
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (L.C.T.); (S.V.); (J.G.C.)
| | - Diogo M. F. Santos
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Laboratory for Physics of Materials and Emerging Technologies (LaPMET), Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (D.M.F.S.); (M.N.d.P.)
| | - Svetlozar Velizarov
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (L.C.T.); (S.V.); (J.G.C.)
| | - Isabel M. Coelhoso
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (L.C.T.); (S.V.); (J.G.C.)
| | - Adélio Mendes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - João G. Crespo
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; (L.C.T.); (S.V.); (J.G.C.)
| | - Maria Norberta de Pinho
- Center of Physics and Engineering of Advanced Materials (CeFEMA), Laboratory for Physics of Materials and Emerging Technologies (LaPMET), Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (D.M.F.S.); (M.N.d.P.)
| |
Collapse
|
4
|
Karim A, Aider M. Bioconversion of electro-activated lactose, whey and whey permeate to produce single cell protein, ethanol, aroma volatiles, organic acids and fat by Kluyveromyces marxianus. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Advanced Bioethanol Production: From Novel Raw Materials to Integrated Biorefineries. Processes (Basel) 2021. [DOI: 10.3390/pr9020206] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The production of so-called advanced bioethanol offers several advantages compared to traditional bioethanol production processes in terms of sustainability criteria. This includes, for instance, the use of nonfood crops or residual biomass as raw material and a higher potential for reducing greenhouse gas emissions. The present review focuses on the recent progress related to the production of advanced bioethanol, (i) highlighting current results from using novel biomass sources such as the organic fraction of municipal solid waste and certain industrial residues (e.g., residues from the paper, food, and beverage industries); (ii) describing new developments in pretreatment technologies for the fractionation and conversion of lignocellulosic biomass, such as the bioextrusion process or the use of novel ionic liquids; (iii) listing the use of new enzyme catalysts and microbial strains during saccharification and fermentation processes. Furthermore, the most promising biorefinery approaches that will contribute to the cost-competitiveness of advanced bioethanol production processes are also discussed, focusing on innovative technologies and applications that can contribute to achieve a more sustainable and effective utilization of all biomass fractions. Special attention is given to integrated strategies such as lignocellulose-based biorefineries for the simultaneous production of bioethanol and other high added value bioproducts.
Collapse
|
6
|
Abstract
Due to rapid urbanization and industrialization, the population density of the world is intense in developing countries. This overgrowing population has resulted in the production of huge amounts of waste/refused water due to various anthropogenic activities. Household, municipal corporations (MC), urban local bodies (ULBs), and industries produce a huge amount of waste water, which is discharged into nearby water bodies and streams/rivers without proper treatment, resulting in water pollution. This mismanaged treatment of wastewater leads to various challenges like loss of energy to treat the wastewater and scarcity of fresh water, beside various water born infections. However, all these major issues can provide solutions to each other. Most of the wastewater generated by ULBs and industries is rich in various biopolymers like starch, lactose, glucose lignocellulose, protein, lipids, fats, and minerals, etc. These biopolymers can be converted into sustainable biofuels, i.e., ethanol, butanol, biodiesel, biogas, hydrogen, methane, biohythane, etc., through its bioremediation followed by dark fermentation (DF) and anaerobic digestion (AD). The key challenge is to plan strategies in such a way that they not only help in the treatment of wastewater, but also produce some valuable energy driven products from it. This review will deal with various strategies being used in the treatment of wastewater as well as for production of some valuable energy products from it to tackle the upcoming future demands and challenges of fresh water and energy crisis, along with sustainable development.
Collapse
|
7
|
Wendland J. Special Issue: Non-Conventional Yeasts: Genomics and Biotechnology. Microorganisms 2019; 8:microorganisms8010021. [PMID: 31877650 PMCID: PMC7022452 DOI: 10.3390/microorganisms8010021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Affiliation(s)
- Jürgen Wendland
- Department of Microbiology and Biochemistry; Hochschule GEISENHEIM University, Von-Lade-Str. 1, 65366 Geisenheim, Germany
| |
Collapse
|