1
|
Avchar R, Shinde S, Kashid Y, Gangani P, Sharma A. Exophiala zingiberis sp. nov., a novel cellulase-producing black yeast-like fungi isolated from ginger in India. Int J Syst Evol Microbiol 2024; 74. [PMID: 39699938 DOI: 10.1099/ijsem.0.006614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
The genus Exophiala, known for its melanized, yeast-like appearance, includes a diverse group of fungi with significant implications across various fields. An isolate representing a novel species was identified within this genus from a ginger tuber from India, based on morphological characteristics and molecular phylogenetic analysis. Phylogenetic analysis of the D1/D2 domain of the 26S LSU rRNA gene, SSU rRNA gene and the internal transcribed spacer (ITS) region confirmed this strain as a new species. It was named Exophiala zingiberis sp. nov. (MycoBank no. MB 855415), with MCC 9960T designated as the holotype and PYCC 9834 as the isotype. Exophiala zingiberis was positioned as a sister species to a clade that includes Exophiala castellanii, Exophiala mali and three additional species. Phylogenetic analysis indicates that while E. zingiberis shares a common ancestor with these species, it is genetically distinct, underscoring its novel status. The type strain of this novel species differs from Exophiala yuxiensis YMF1.07354T, the most closely related species, by 19 nucleotide substitutions (3.6% sequence variation) in the D1/D2 region (549 bp compared) and 104 nucleotide substitutions and 44 gaps (27.1% sequence variation) in the ITS region (546 bp compared).
Collapse
Affiliation(s)
- Rameshwar Avchar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, Maharashtra, India
| | | | - Yaminee Kashid
- Rayat Institute of Research and Development, Satara 415001, Maharashtra, India
| | - Parang Gangani
- Modern College, Ganeshkhind, Pune 411007, Maharashtra, India
| | - Avinash Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, Maharashtra, India
| |
Collapse
|
2
|
Mat-Hussin NH, Siew SW, Maghpor MN, Gan HM, Ahmad HF. Method for detection of pathogenic bacteria from indoor air microbiome samples using high-throughput amplicon sequencing. MethodsX 2024; 12:102636. [PMID: 38439930 PMCID: PMC10909749 DOI: 10.1016/j.mex.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
The exposure of the air microbiome in indoor air posed a detrimental health effect to the building occupants compared to the outdoor air. Indoor air in hospitals has been identified as a reservoir for various pathogenic microbes. The conventional culture-dependent method has been widely used to access the microbial community in the air. However, it has limited capability in enumerating the complex air microbiome communities, as some of the air microbiomes are uncultivable, slow-growers, and require specific media for cultivation. Here, we utilized a culture-independent method via amplicon sequencing to target the V3 region of 16S rRNA from the pool of total genomic DNA extracted from the dust samples taken from hospital interiors. This method will help occupational health practitioners, researchers, and health authorities to efficiently and comprehensively monitor the presence of harmful air microbiome thus take appropriate action in controlling and minimizing the health risks to the hospital occupants. Key features;•Culture-independent methods offer fast, comprehensive, and unbias profiles of pathogenic and non-pathogenic bacteria from the air microbiomes.•Unlike the culture-dependent method, amplicon sequencing allows bacteria identification to the lowest taxonomy levels.
Collapse
Affiliation(s)
- Nor Husna Mat-Hussin
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia
| | - Shing Wei Siew
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia
| | - Mohd Norhafsam Maghpor
- Laboratory Division, Consultation and Research Department, National Institute of Occupational Safety and Health (NIOSH), Seksyen 15, Bandar Baru Bangi, Selangor 43650, Malaysia
| | - Han Ming Gan
- Patriot Biotech Sdn. Bhd., Bandar Sunway, Subang Jaya, Selangor 47500, Malaysia
| | - Hajar Fauzan Ahmad
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia
- Group of Environment, Microbiology and Bioprocessing (GERMS), Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, Gambang, Kuantan, Pahang 26300, Malaysia
| |
Collapse
|
3
|
Thitla T, Kumla J, Hongsanan S, Senwanna C, Khuna S, Lumyong S, Suwannarach N. Exploring diversity rock-inhabiting fungi from northern Thailand: a new genus and three new species belonged to the family Herpotrichiellaceae. Front Cell Infect Microbiol 2023; 13:1252482. [PMID: 37692164 PMCID: PMC10485699 DOI: 10.3389/fcimb.2023.1252482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
Members of the family Herpotrichiellaceae are distributed worldwide and can be found in various habitats including on insects, plants, rocks, and in the soil. They are also known to be opportunistic human pathogens. In this study, 12 strains of rock-inhabiting fungi that belong to Herpotrichiellaceae were isolated from rock samples collected from forests located in Lamphun and Sukhothai provinces of northern Thailand during the period from 2021 to 2022. On the basis of the morphological characteristics, growth temperature, and multi-gene phylogenetic analyses of a combination of the internal transcribed spacer, the large subunit, and the small subunit of ribosomal RNA, beta tubulin and the translation elongation factor 1-a genes, the new genus, Petriomyces gen. nov., has been established to accommodate the single species, Pe. obovoidisporus sp. nov. In addition, three new species of Cladophialophora have also been introduced, namely, Cl. rupestricola, Cl. sribuabanensis, and Cl. thailandensis. Descriptions, illustrations, and a phylogenetic trees indicating the placement of these new taxa are provided. Here, we provide updates and discussions on the phylogenetic placement of other fungal genera within Herpotrichiellaceae.
Collapse
Affiliation(s)
- Tanapol Thitla
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Sinang Hongsanan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Chanokned Senwanna
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Thitla T, Kumla J, Khuna S, Lumyong S, Suwannarach N. Species Diversity, Distribution, and Phylogeny of Exophiala with the Addition of Four New Species from Thailand. J Fungi (Basel) 2022; 8:766. [PMID: 35893134 PMCID: PMC9331753 DOI: 10.3390/jof8080766] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The genus Exophiala is an anamorphic ascomycete fungus in the family Herpotrichiellaceae of the order Chaetothyriales. Exophiala species have been classified as polymorphic black yeast-like fungi. Prior to this study, 63 species had been validated, published, and accepted into this genus. Exophiala species are known to be distributed worldwide and have been isolated in various habitats around the world. Several Exophiala species have been identified as potential agents of human and animal mycoses. However, in some studies, Exophiala species have been used in agriculture and biotechnological applications. Here, we provide a brief review of the diversity, distribution, and taxonomy of Exophiala through an overview of the recently published literature. Moreover, four new Exophiala species were isolated from rocks that were collected from natural forests located in northern Thailand. Herein, we introduce these species as E. lamphunensis, E. lapidea, E. saxicola, and E. siamensis. The identification of these species was based on a combination of morphological characteristics and molecular analyses. Multi-gene phylogenetic analyses of a combination of the internal transcribed spacer (ITS) and small subunit (nrSSU) of ribosomal DNA, along with the translation elongation factor (tef), partial β-tubulin (tub), and actin (act) genes support that these four new species are distinct from previously known species of Exophiala. A full description, illustrations, and a phylogenetic tree showing the position of four new species are provided.
Collapse
Affiliation(s)
- Tanapol Thitla
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Surapong Khuna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (J.K.); (S.K.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Moubarz G, Saad-Hussein A, Elfiky A. 16S rRNA gene identification of airborne pathogenic bacteria isolated from bioaerosols of wastewater treatment plant. EGYPTIAN PHARMACEUTICAL JOURNAL 2022. [DOI: 10.4103/epj.epj_27_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|