1
|
Afshana, Reshi ZA, Shah MA, Malik RA, Rashid I. Species composition of root-associated mycobiome of ruderal invasive Anthemis cotula L. varies with elevation in Kashmir Himalaya. Int Microbiol 2023; 26:1053-1071. [PMID: 37093323 DOI: 10.1007/s10123-023-00359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Investigating the microbial communities associated with invasive plant species can provide insights into how these species establish and thrive in new environments. Here, we explored the fungal species associated with the roots of the invasive species Anthemis cotula L. at 12 sites with varying elevations in the Kashmir Himalaya. Illumina MiSeq platform was used to identify the species composition, diversity, and guild structure of these root-associated fungi. The study found a total of 706 fungal operational taxonomic units (OTUs) belonging to 8 phyla, 20 classes, 53 orders, 109 families, and 160 genera associated with roots of A. cotula, with the most common genus being Funneliformis. Arbuscular mycorrhizal fungi (AMF) constituted the largest guild at higher elevations. The study also revealed that out of the 12 OTUs comprising the core mycobiome, 4 OTUs constituted the stable component while the remaining 8 OTUs comprised the dynamic component. While α-diversity did not vary across sites, significant variation was noted in β-diversity. The study confirmed the facilitative role of the microbiome through a greenhouse trial in which a significant effect of soil microbiome on height, shoot biomass, root biomass, number of flower heads, and internal CO2 concentration of the host plant was observed. The study indicates that diverse fungal mutualists get associated with this invasive alien species even in nutrient-rich ruderal habitats and may be contributing to its spread into higher elevations. This study highlights the importance of understanding the role of root-associated fungi in invasion dynamics and the potential use of mycobiome management strategies to control invasive species.
Collapse
Affiliation(s)
- Afshana
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India.
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Rayees A Malik
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Irfan Rashid
- Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| |
Collapse
|
2
|
Interaction between growth environment and host progeny shape fungal endophytic assemblages in transplanted Fagus sylvatica. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Martinović T, Odriozola I, Mašínová T, Doreen Bahnmann B, Kohout P, Sedlák P, Merunková K, Větrovský T, Tomšovský M, Ovaskainen O, Baldrian P. Temporal turnover of the soil microbiome composition is guild-specific. Ecol Lett 2021; 24:2726-2738. [PMID: 34595822 DOI: 10.1111/ele.13896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/10/2021] [Indexed: 01/06/2023]
Abstract
Although spatial and temporal variation are both important components structuring microbial communities, the exact quantification of temporal turnover rates of fungi and bacteria has not been performed to date. In this study, we utilised repeated resampling of bacterial and fungal communities at specific locations across multiple years to describe their patterns and rates of temporal turnover. Our results show that microbial communities undergo temporal change at a rate of 0.010-0.025 per year (in units of Sorensen similarity), and the change in soil is slightly faster in fungi than in bacteria, with bacterial communities changing more rapidly in litter than soil. Importantly, temporal development differs across fungal guilds and bacterial phyla with different ecologies. While some microbial guilds show consistent responses across regional locations, others show site-specific development with weak general patterns. These results indicate that guild-level resolution is important for understanding microbial community assembly, dynamics and responses to environmental factors.
Collapse
Affiliation(s)
- Tijana Martinović
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Czech Republic
| | - Iñaki Odriozola
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Czech Republic
| | - Tereza Mašínová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Czech Republic
| | - Barbara Doreen Bahnmann
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Czech Republic
| | - Petr Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Czech Republic.,Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Sedlák
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Kristina Merunková
- Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Tomáš Větrovský
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Czech Republic
| | - Michal Tomšovský
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Otso Ovaskainen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Czech Republic
| |
Collapse
|
4
|
Habiyaremye JDD, Goldmann K, Reitz T, Herrmann S, Buscot F. Tree Root Zone Microbiome: Exploring the Magnitude of Environmental Conditions and Host Tree Impact. Front Microbiol 2020; 11:749. [PMID: 32390986 PMCID: PMC7190799 DOI: 10.3389/fmicb.2020.00749] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/30/2020] [Indexed: 01/14/2023] Open
Abstract
Tree roots attract their associated microbial partners from the local soil community. Accordingly, tree root-associated microbial communities are shaped by both the host tree and local environmental variables. To rationally compare the magnitude of environmental conditions and host tree impact, the "PhytOakmeter" project planted clonal oak saplings (Quercus robur L., clone DF159) as phytometers into different field sites that are within a close geographic space across the Central German lowland region. The PhytOakmeters were produced via micro-propagation to maintain their genetic identity. The current study analyzed the microbial communities in the PhytOakmeter root zone vs. the tree root-free zone of soil two years after out-planting the trees. Soil DNA was extracted, 16S and ITS2 genes were respectively amplified for bacteria and fungi, and sequenced using Illumina MiSeq technology. The obtained microbial communities were analyzed in relation to soil chemistry and weather data as environmental conditions, and the host tree growth. Although microbial diversity in soils of the tree root zone was similar among the field sites, the community structure was site-specific. Likewise, within respective sites, the microbial diversity between PhytOakmeter root and root-free zones was comparable. The number of microbial species exclusive to either zone, however, was higher in the host tree root zone than in the tree root-free zone. PhytOakmeter "core" and "site-specific" microbiomes were identified and attributed to the host tree selection effect and/or to the ambient conditions of the sites, respectively. The identified PhytOakmeter root zone-associated microbiome predominantly included ectomycorrhizal fungi, yeasts and saprotrophs. Soil pH, soil organic matter, and soil temperature were significantly correlated with the microbial diversity and/or community structure. Although the host tree contributed to shape the soil microbial communities, its effect was surpassed by the impact of environmental factors. The current study helps to understand site-specific microbe recruitment processes by young host trees.
Collapse
Affiliation(s)
- Jean de Dieu Habiyaremye
- Department of Soil Ecology, Helmholtz Centre for Environmental Research (UFZ), Halle, Germany
- Department of Biology II, Leipzig University, Leipzig, Germany
- Department of Mathematics, Science and Physical Education, University of Rwanda, Kigali, Rwanda
| | - Kezia Goldmann
- Department of Soil Ecology, Helmholtz Centre for Environmental Research (UFZ), Halle, Germany
| | - Thomas Reitz
- Department of Soil Ecology, Helmholtz Centre for Environmental Research (UFZ), Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sylvie Herrmann
- Department of Soil Ecology, Helmholtz Centre for Environmental Research (UFZ), Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - François Buscot
- Department of Soil Ecology, Helmholtz Centre for Environmental Research (UFZ), Halle, Germany
- Department of Biology II, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|