1
|
Robé C, Projahn M, Boll K, Blasse A, Merle R, Roesler U, Friese A. Survival of highly related ESBL- and pAmpC- producing Escherichia coli in broiler farms identified before and after cleaning and disinfection using cgMLST. BMC Microbiol 2024; 24:143. [PMID: 38664628 PMCID: PMC11044539 DOI: 10.1186/s12866-024-03292-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Broiler chickens are frequently colonized with Extended-Spectrum Beta-Lactamase- (ESBL-) and plasmid mediated AmpC Beta-Lactamase- (pAmpC-) producing Enterobacterales, and we are confronted with the potential spread of these resistant bacteria in the food chain, in the environment, and to humans. Research focused on identifying of transmission routes and investigating potential intervention measures against ESBL- and pAmpC- producing bacteria in the broiler production chain. However, few data are available on the effects of cleaning and disinfection (C&D) procedures in broiler stables on ESBL- and pAmpC- producing bacteria. RESULTS We systematically investigated five broiler stables before and after C&D and identified potential ESBL- and pAmpC- colonization sites after C&D in the broiler stables, including the anteroom and the nearby surrounding environment of the broiler stables. Phenotypically resistant E. coli isolates grown on MacConkey agar with cefotaxime were further analyzed for their beta-lactam resistance genes and phylogenetic groups, as well as the relation of isolates from the investigated stables before and after C&D by whole genome sequencing. Survival of ESBL- and pAmpC- producing E. coli is highly likely at sites where C&D was not performed or where insufficient cleaning was performed prior to disinfection. For the first time, we showed highly related ESBL-/pAmpC- producing E. coli isolates detected before and after C&D in four of five broiler stables examined with cgMLST. Survival of resistant isolates in investigated broiler stables as well as transmission of resistant isolates from broiler stables to the anteroom and surrounding environment and between broiler farms was shown. In addition, enterococci (frequently utilized to detect fecal contamination and for C&D control) can be used as an indicator bacterium for the detection of ESBL-/pAmpC- E. coli after C&D. CONCLUSION We conclude that C&D can reduce ESBL-/pAmpC- producing E. coli in conventional broiler stables, but complete ESBL- and pAmpC- elimination does not seem to be possible in practice as several factors influence the C&D outcome (e.g. broiler stable condition, ESBL-/pAmpC- status prior to C&D, C&D procedures used, and biosecurity measures on the farm). A multifactorial approach, combining various hygiene- and management measures, is needed to reduce ESBL-/pAmpC- E. coli in broiler farms.
Collapse
Affiliation(s)
- Caroline Robé
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany.
| | - Michaela Projahn
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Katrin Boll
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
- Department Food Safety, Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Anja Blasse
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
- Centre for International Health Protection, Robert Koch Institute, Berlin, Germany
| | - Roswitha Merle
- Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - Anika Friese
- Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Economou V, Delis G, Stavrou D, Gousia P, Tsitsos A, Mantzios T, Chouliara E, Kolovos N, Soultos N. Characterization of Extended Spectrum Cephalosporin-Resistant Escherichia coli Strains Isolated from Raw Poultry Carcasses in Catering Services in Northern Greece. Vet Sci 2023; 10:487. [PMID: 37624274 PMCID: PMC10459896 DOI: 10.3390/vetsci10080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Antimicrobial resistance is considered a topic of utmost interest under the concept of "One Health", having severe implications in both human and veterinary medicine. Among the antibiotic-resistant bacteria, gram-negative bacteria, especially those belonging to the order of Enterobacterales (such as Escherichia coli), hold a prominent position in terms of both virulence and possessing/disseminating antimicrobial resistance (AMR) traits. The aim of this study was to examine the presence of extended-spectrum β-lactamase producing E. coli isolates in raw poultry carcasses collected from a university club. Five hundred raw poultry skin samples were collected from the Aristotle University of Thessaloniki (AUTh) club in Thessaloniki, Greece. A total of 64% of the samples were positive for the presence of extended-spectrum β-lactamase (ESBL)-producing E. coli. The isolates were further examined for their susceptibility to selected antibiotics by the disc diffusion method and were characterized as true ESBL, as producing class C cephalosporinases (AmpC) or "of unknown etiology" by the combination disc test. The 86 of the 120 isolates (71.67%) were classified as true ESBL, 24 (20.00%) as AmpC, and 10 (8.33%) as "of unknown etiology". The isolates were screened for the occurrence of β-lactamase genes (blaTEM, blaCTX-M, blaSHV, and blaOXA). Thirty-six isolates (32 ESBL- and 4 AmpC-phenotype) harbored both blaTEM and blaCTX-M genes, twenty-two isolates (among which 19 ESBL-phenotype and 2 AmpC-phenotype) harbored blaCTX-M only, whereas twenty-six (14 ESBL- and 12 AmpC-phenotype) isolates harbored blaTEM alone. No isolate harboring blaSHV or blaOXA was detected. The results demonstrate the existence of E. coli isolates producing extended-spectrum β-lactamases in poultry carcasses from Greece, pausing a risk for antibiotic resistance transfer to humans.
Collapse
Affiliation(s)
- Vangelis Economou
- Laboratory of Animal Food Products Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (A.T.); (N.K.); (N.S.)
| | - Georgios Delis
- Laboratory of Pharmacology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Dimitra Stavrou
- Hellenic Army Biological Research Center, 152 36 Athens, Greece;
| | - Panagiota Gousia
- Research Laboratories of Thessaloniki, Department of Food Testing, Hellenic Food Authority, 570 01 Thermi, Greece;
| | - Anestis Tsitsos
- Laboratory of Animal Food Products Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (A.T.); (N.K.); (N.S.)
| | - Tilemachos Mantzios
- Unit of Avian Medicine, Clinic of Farm Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, 546 27 Thessaloniki, Greece;
| | - Eirini Chouliara
- Laboratory of Technology of Food of Animal Origin, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Nikolaos Kolovos
- Laboratory of Animal Food Products Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (A.T.); (N.K.); (N.S.)
| | - Nikolaos Soultos
- Laboratory of Animal Food Products Hygiene and Veterinary Public Health, School of Veterinary Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (A.T.); (N.K.); (N.S.)
| |
Collapse
|
3
|
Merrick B, Sergaki C, Edwards L, Moyes DL, Kertanegara M, Prossomariti D, Shawcross DL, Goldenberg SD. Modulation of the Gut Microbiota to Control Antimicrobial Resistance (AMR)-A Narrative Review with a Focus on Faecal Microbiota Transplantation (FMT). Infect Dis Rep 2023; 15:238-254. [PMID: 37218816 DOI: 10.3390/idr15030025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the greatest challenges facing humanity, causing a substantial burden to the global healthcare system. AMR in Gram-negative organisms is particularly concerning due to a dramatic rise in infections caused by extended-spectrum beta-lactamase and carbapenemase-producing Enterobacterales (ESBL and CPE). These pathogens have limited treatment options and are associated with poor clinical outcomes, including high mortality rates. The microbiota of the gastrointestinal tract acts as a major reservoir of antibiotic resistance genes (the resistome), and the environment facilitates intra and inter-species transfer of mobile genetic elements carrying these resistance genes. As colonisation often precedes infection, strategies to manipulate the resistome to limit endogenous infections with AMR organisms, as well as prevent transmission to others, is a worthwhile pursuit. This narrative review presents existing evidence on how manipulation of the gut microbiota can be exploited to therapeutically restore colonisation resistance using a number of methods, including diet, probiotics, bacteriophages and faecal microbiota transplantation (FMT).
Collapse
Affiliation(s)
- Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| | - Chrysi Sergaki
- Diagnostics R&D, Medicines and Healthcare Products Regulatory Agency (MHRA), Potters Bar EN6 3QG, UK
| | - Lindsey Edwards
- School of Immunology and Microbial Sciences, Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College, London SE1 1UL, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College, London SE1 1UK, UK
| | - Michael Kertanegara
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| | - Désirée Prossomariti
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| | - Debbie L Shawcross
- School of Immunology and Microbial Sciences, Institute of Liver Studies, Faculty of Life Sciences and Medicine, King's College, London SE1 1UL, UK
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College, London SE1 7EH, UK
| |
Collapse
|
4
|
Badescu B, Buda V, Romanescu M, Lombrea A, Danciu C, Dalleur O, Dohou AM, Dumitrascu V, Cretu O, Licker M, Muntean D. Current State of Knowledge Regarding WHO Critical Priority Pathogens: Mechanisms of Resistance and Proposed Solutions through Candidates Such as Essential Oils. PLANTS (BASEL, SWITZERLAND) 2022; 11:1789. [PMID: 35890423 PMCID: PMC9319935 DOI: 10.3390/plants11141789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 05/05/2023]
Abstract
The rise of multidrug-resistant (MDR) pathogens has become a global health threat and an economic burden in providing adequate and effective treatment for many infections. This large-scale concern has emerged mainly due to mishandling of antibiotics (ABs) and has resulted in the rapid expansion of antimicrobial resistance (AMR). Nowadays, there is an urgent need for more potent, non-toxic and effective antimicrobial agents against MDR strains. In this regard, clinicians, pharmacists, microbiologists and the entire scientific community are encouraged to find alternative solutions in treating infectious diseases cause by these strains. In its "10 global issues to track in 2021", the World Health Organization (WHO) has made fighting drug resistance a priority. It has also issued a list of bacteria that are in urgent need for new ABs. Despite all available resources, researchers are unable to keep the pace of finding novel ABs in the face of emerging MDR strains. Traditional methods are increasingly becoming ineffective, so new approaches need to be considered. In this regard, the general tendency of turning towards natural alternatives has reinforced the interest in essential oils (EOs) as potent antimicrobial agents. Our present article aims to first review the main pathogens classified by WHO as critical in terms of current AMR. The next objective is to summarize the most important and up-to-date aspects of resistance mechanisms to classical antibiotic therapy and to compare them with the latest findings regarding the efficacy of alternative essential oil therapy.
Collapse
Affiliation(s)
- Bianca Badescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Valentina Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Phamacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Mirabela Romanescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Adelina Lombrea
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Phamacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (A.L.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Phamacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Olivia Dalleur
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; (O.D.); (A.M.D.)
| | - Angele Modupe Dohou
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; (O.D.); (A.M.D.)
- Faculté des Sciences de la Santé, Université d’Abomey Calavi, Cotonou 01 BP 188, Benin
| | - Victor Dumitrascu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (V.D.); (O.C.); (M.L.)
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (V.D.); (O.C.); (M.L.)
| | - Monica Licker
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (V.D.); (O.C.); (M.L.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
| | - Delia Muntean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Phamacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (V.D.); (O.C.); (M.L.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Becker E, Correia-Carreira G, Projahn M, Käsbohrer A. Modeling the Impact of Management Changes on the Infection Dynamics of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in the Broiler Production. Microorganisms 2022; 10:981. [PMID: 35630424 PMCID: PMC9144090 DOI: 10.3390/microorganisms10050981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Livestock animals, especially poultry, are a known reservoir for extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli). They may enter the pen either via positive day-old chicks or via the environment. We developed a mathematical model to illustrate the entry and dissemination of resistant bacteria in a broiler pen during one fattening period in order to investigate the effectiveness of intervention measures on this infection process. Different management measures, such as varying amounts of litter, a slow-growing breed or lower stocking densities, were tested for their effects on broiler colonization. We also calculated the impact of products that may influence the microbiota in the chicks' digestive tract, such as pre- or probiotics, feed supplements or competitive exclusion products. Our model outcomes show that a contaminated pen or positive chicks at the beginning of the fattening period can infect the entire flock. Increasing the amount of litter and decreasing the stocking density were shown to be effective in our model. Differences in the route of entry were found: if the chicks are already positive, the litter quantity must be increased to at least six times the standard of 1000 g/m2, whereas, if the pen is contaminated on the first day, three times the litter quantity is sufficient. A reduced stocking density of 20 kg/m2 had a significant effect on the incidence of infection only in a previously contaminated pen. Combinations of two or three measures were effective in both scenarios; similarly, feed additives may be beneficial in reducing the growth rate of ESBL-producing E. coli. This model is a valuable tool for evaluating interventions to reduce the transmission and spread of resistant bacteria in broiler houses. However, data are still needed to optimize the model, such as growth rates or survival data of ESBL-producing E. coli in different environments.
Collapse
Affiliation(s)
- Evelyne Becker
- MINT VR-Labs, Berliner Hochschule für Technik, 13353 Berlin, Germany
- Institute of Pharmacy/LPG, Pharmaceutical Biology, Universität Greifswald, 17489 Greifswald, Germany
| | - Guido Correia-Carreira
- German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (G.C.-C.); (M.P.); (A.K.)
| | - Michaela Projahn
- German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (G.C.-C.); (M.P.); (A.K.)
| | - Annemarie Käsbohrer
- German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (G.C.-C.); (M.P.); (A.K.)
- Unit of Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
6
|
Wang X, Wang Y, Fang C, Gong Q, Huang J, Zhang Y, Wang L. Allicin affects the pharmacokinetics of sulfadiazine and florfenicol by downregulating the expression of jejunum P-gp and BCRP in broilers. Poult Sci 2022; 101:101947. [PMID: 35688033 PMCID: PMC9189214 DOI: 10.1016/j.psj.2022.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 10/26/2022] Open
|
7
|
Ban Y, Guan LL. Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. J Anim Sci Biotechnol 2021; 12:109. [PMID: 34635155 PMCID: PMC8507308 DOI: 10.1186/s40104-021-00630-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/08/2021] [Indexed: 01/03/2023] Open
Abstract
Direct-fed microbials (DFMs) are feed additives containing live naturally existing microbes that can benefit animals' health and production performance. Due to the banned or strictly limited prophylactic and growth promoting usage of antibiotics, DFMs have been considered as one of antimicrobial alternatives in livestock industry. Microorganisms used as DFMs for ruminants usually consist of bacteria including lactic acid producing bacteria, lactic acid utilizing bacteria and other bacterial groups, and fungi containing Saccharomyces and Aspergillus. To date, the available DFMs for ruminants have been largely based on their effects on improving the feed efficiency and ruminant productivity through enhancing the rumen function such as stabilizing ruminal pH, promoting ruminal fermentation and feed digestion. Recent research has shown emerging evidence that the DFMs may improve performance and health in young ruminants, however, these positive outcomes were not consistent among studies and the modes of action have not been clearly defined. This review summarizes the DFM studies conducted in ruminants in the last decade, aiming to provide the new knowledge on DFM supplementation strategies for various ruminant production stages, and to identify what are the potential barriers and challenges for current ruminant industry to adopt the DFMs. Overall literature research indicates that DFMs have the potential to mitigate ruminal acidosis, improve immune response and gut health, increase productivity (growth and milk production), and reduce methane emissions or fecal shedding of pathogens. More research is needed to explore the mode of action of specific DFMs in the gut of ruminants, and the optimal supplementation strategies to promote the development and efficiency of DFM products for ruminants.
Collapse
Affiliation(s)
- Yajing Ban
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
8
|
Hung YP, Lee CC, Lee JC, Tsai PJ, Hsueh PR, Ko WC. The Potential of Probiotics to Eradicate Gut Carriage of Pathogenic or Antimicrobial-Resistant Enterobacterales. Antibiotics (Basel) 2021; 10:antibiotics10091086. [PMID: 34572668 PMCID: PMC8470257 DOI: 10.3390/antibiotics10091086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Probiotic supplements have been used to decrease the gut carriage of antimicrobial-resistant Enterobacterales through changes in the microbiota and metabolomes, nutrition competition, and the secretion of antimicrobial proteins. Many probiotics have shown Enterobacterales-inhibiting effects ex vivo and in vivo. In livestock, probiotics have been widely used to eradicate colon or environmental antimicrobial-resistant Enterobacterales colonization with promising efficacy for many years by oral supplementation, in ovo use, or as environmental disinfectants. In humans, probiotics have been used as oral supplements for infants to decease potential gut pathogenic Enterobacterales, and probiotic mixtures, especially, have exhibited positive results. In contrast to the beneficial effects in infants, for adults, probiotic supplements might decrease potentially pathogenic Enterobacterales, but they fail to completely eradicate them in the gut. However, there are several ways to improve the effects of probiotics, including the discovery of probiotics with gut-protection ability and antimicrobial effects, the modification of delivery methods, and the discovery of engineered probiotics. The search for multifunctional probiotics and synbiotics could render the eradication of “bad” Enterobacterales in the human gut via probiotic administration achievable in the future.
Collapse
Affiliation(s)
- Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan 700, Taiwan;
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
| | - Ching-Chi Lee
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Jen-Chieh Lee
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 404, Taiwan
- Correspondence: (P.-R.H.); (W.-C.K.)
| | - Wen-Chien Ko
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan; (C.-C.L.); (J.-C.L.)
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 705, Taiwan
- Correspondence: (P.-R.H.); (W.-C.K.)
| |
Collapse
|
9
|
Becker E, Projahn M, Burow E, Käsbohrer A. Are There Effective Intervention Measures in Broiler Production against the ESBL/AmpC Producer Escherichia coli? Pathogens 2021; 10:pathogens10050608. [PMID: 34063430 PMCID: PMC8156222 DOI: 10.3390/pathogens10050608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
Extended-spectrum beta-lactamase (ESBL) and AmpC beta-lactamase (AmpC) producing Enterobacteriaceae occur frequently in livestock animals and the subsequent stages of the meat production chain and are therefore considered a risk for human health. Strict biosecurity measures and optimal farm management should reduce or even prevent poultry flock colonization at farm level. This review summarizes and evaluates published information on the effectiveness of specific intervention measures and farm management factors aiming to reduce the occurrence and spread of ESBL/AmpC producing or commensal or pathogenic E. coli in broiler chicken farms. In this systematic literature review, a total of 643 publications were analyzed, and 14 studies with significant outcome about the effectiveness of specific measures against E. coli and ESBL/AmpC producing E. coli in broiler chicken farms were found. Different feed additives seem to have an impact on the occurrence of those microorganisms. The measures ‘cleaning and disinfection’ and ‘competitive exclusion’ showed strong effects in prevention in some studies. In summary, some intervention measures showed potential to protect against or eliminate ESBL/AmpC-producing, commensal or pathogenic E. coli at farm level. Due to the high variability in the outcome of the studies, more specific, detailed investigations are needed to assess the potential of the individual intervention measures.
Collapse
Affiliation(s)
- Evelyne Becker
- Department for Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (M.P.); (E.B.); (A.K.)
- Institute of Pharmacy/LPG, Pharmaceutical Biology, Universität Greifswald, 17489 Greifswald, Germany
- Correspondence:
| | - Michaela Projahn
- Department for Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (M.P.); (E.B.); (A.K.)
| | - Elke Burow
- Department for Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (M.P.); (E.B.); (A.K.)
| | - Annemarie Käsbohrer
- Department for Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany; (M.P.); (E.B.); (A.K.)
- Unit of Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, 1210 Wien, Austria
| |
Collapse
|