1
|
Abu Ghazal T, Veres K, Vidács L, Szemerédi N, Spengler G, Berkecz R, Hohmann J. Furanonaphthoquinones, Diterpenes, and Flavonoids from Sweet Marjoram and Investigation of Antimicrobial, Bacterial Efflux, and Biofilm Formation Inhibitory Activities. ACS OMEGA 2023; 8:34816-34825. [PMID: 37780020 PMCID: PMC10536869 DOI: 10.1021/acsomega.3c03982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023]
Abstract
The chloroform extract of Origanum majorana exhibited high antibacterial and antifungal activities against 12 bacterial and 4 fungal strains; therefore, it was subjected to bioassay-guided isolation to afford six compounds (1-6). The structures were determined via one- and two-dimensional nuclear magnetic spectroscopy and high-resolution electrospray ionization mass spectrometry experiments. The compounds were identified as furanonaphthoquinones [majoranaquinone (1), 2,3-dimethylnaphtho[2,3-b]furan-4,9-dione (2)], diterpenes [19-hydroxyabieta-8,11,13-trien-7-one (3), 13,14-seco-13-oxo-19-hydroxyabieta-8-en-14-al (4)], and flavonoids [sterubin (5) and majoranin (6)]. Compounds 1 and 2 were first obtained from a natural source and compounds 3 and 4 were previously undescribed. Majoranaquinone (1) exhibited a high antibacterial effect against 4 Staphylococcus, 1 Moraxella, and 1 Enterococcus strains (MIC values between 7.8 μM and 1 mM). In the efflux pump inhibition assay, majoranaquinone (1) showed substantial activity in Escherichia coli ATCC 25922 strain. Furthermore, 1 was found to be an effective biofilm formation inhibitor on E. coli ATCC 25922 and E. coli K-12 AG100 bacteria. Our findings proved that bioactivities of majoranaquinone (1) significantly exceed those of the essential oil constituents; therefore, it should also be considered when assessing the antimicrobial effects of O. majorana.
Collapse
Affiliation(s)
| | - Katalin Veres
- Institute
of Pharmacognosy, University of Szeged, Szeged H-6720, Hungary
| | - Lívia Vidács
- Institute
of Pharmacognosy, University of Szeged, Szeged H-6720, Hungary
| | - Nikoletta Szemerédi
- Department
of Medical Microbiology, Albert Szent-Györgyi Health Center
and Albert Szent-Györgyi Medical School, University of Szeged, Szeged H-6720, Hungary
| | - Gabriella Spengler
- Department
of Medical Microbiology, Albert Szent-Györgyi Health Center
and Albert Szent-Györgyi Medical School, University of Szeged, Szeged H-6720, Hungary
| | - Róbert Berkecz
- Institute
of Pharmaceutical Analysis, University of
Szeged, 6720 Szeged, Hungary
| | - Judit Hohmann
- Institute
of Pharmacognosy, University of Szeged, Szeged H-6720, Hungary
- Interdisciplinary
Centre for Natural Products, University
of Szeged, Szeged H-6720, Hungary
- ELKH-USZ
Biologically Active Natural Products Research Group, University of Szeged, Szeged H-6720, Hungary
| |
Collapse
|
2
|
Hoque E, Tran P, Jacobo U, Bergfeld N, Acharya S, Shamshina JL, Reid TW, Abidi N. Antimicrobial Coatings for Medical Textiles via Reactive Organo-Selenium Compounds. Molecules 2023; 28:6381. [PMID: 37687210 PMCID: PMC10490204 DOI: 10.3390/molecules28176381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Bleached and cationized cotton fabrics were chemically modified with reactive organoselenium compounds through the nucleophilic aromatic substitution (SNAr) reaction, which allowed for organo-selenium attachment onto the surface of cotton fabrics via covalent bonds and, in the case of the cationized cotton fabric, additional ionic interactions. The resulting textiles exhibited potent bactericidal activity against S. aureus (99.99% reduction), although only moderate activity was observed against E. coli. Fabrics treated with reactive organo-selenium compounds also exhibited fungicidal activities against C. albicans, and much higher antifungal activity was observed when organo-selenium compounds were applied to the cationized cotton in comparison to the bleached cotton. The treatment was found to be durable against rigorous washing conditions (non-ionic detergent/100 °C). This paper is the first report on a novel approach integrating the reaction of cotton fabrics with an organo-selenium antimicrobial agent. This approach is attractive because it provides a method for imparting antimicrobial properties to cotton fabrics which does not disrupt the traditional production processes of a textile mill.
Collapse
Affiliation(s)
- Ejajul Hoque
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Phat Tran
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Unique Jacobo
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Sanjit Acharya
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Julia L. Shamshina
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Ted W. Reid
- Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Křížkovská B, Hoang L, Brdová D, Klementová K, Szemerédi N, Loučková A, Kronusová O, Spengler G, Kaštánek P, Hajšlová J, Viktorová J, Lipov J. Modulation of the bacterial virulence and resistance by well-known European medicinal herbs. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116484. [PMID: 37044231 DOI: 10.1016/j.jep.2023.116484] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salvia officinalis L., Sambucus nigra L., Matricaria chamomilla L., Agrimonia eupatoria L., Fragaria vesca L. and Malva sylvestris L. are plants that have a long tradition in European folk medicine. To this day, they are part of medicinal teas or creams that help with the healing of skin wounds and the treatment of respiratory or intestinal infections. However, so far these plants have not been investigated more deeply than in their direct antibacterial effect. AIM OF THE STUDY Our research is focused on adjuvants that inhibit the mechanism of antibiotic resistance or modulate bacterial virulence. Based on a preliminary screening of 52 European herbs, which commonly appear as part of tea blends or poultice. Six of them were selected for their ability to revert the resistant phenotype of nosocomial bacterial strains. METHODS Herbs selected for this study were obtained from commercially available sources. For the extraction of active compounds ethanol was used. Modulation of virulence was observed as an ability to inhibit bacterial cell-to-cell communication using two mutant sensor strains of Vibrio campbellii. Biofilm formation, and planktonic cell adhesion was measured using a static antibiofilm test. Ethidium bromide assay was used to checked the potential of inhibition bacterial efflux pumps. The antibacterial activities of the herbs were evaluated against resistant bacterial strains using macro dilution methods. RESULTS Alcohol extracts had antibacterial properties mainly against Gram-positive bacteria. Of all of them, the highest antimicrobial activity demonstrated Malva sylvestris, killing both antibiotic resistant bacteria; Staphylococcus aureus with MIC of 0.8 g/L and Pseudomonas aeruginosa 0.7 g/L, respectively. Fragaria vesca extract (0.08 g/L) demonstrated strong synergism with colistin (4 mg/L) in modulating the resistant phenotype to colistin of Pseudomonas aeruginosa. Similarly, the extract of S. officinalis (0.21 g/L) reverted resistance to gentamicin (1 mg/L) in S. aureus. However, Sambucus nigra and Matricaria chamomilla seem to be a very promising source of bacterial efflux pump inhibitors. CONCLUSION The extract of F. vesca was the most active. It was able to reduce biofilm formation probably due to the ability to decrease bacterial quorum sensing. On the other hand, the activity of S. nigra or M. chamomilla in reducing bacterial virulence may be explained by the ability to inhibit bacterial efflux systems. All these plants have potential as an adjuvant for the antibiotic treatment.
Collapse
Affiliation(s)
- Bára Křížkovská
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Lan Hoang
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Daniela Brdová
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Kristýna Klementová
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Anna Loučková
- Department of Food Analysis and Nutrition, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | | | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | | | - Jana Hajšlová
- Department of Food Analysis and Nutrition, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Jan Lipov
- Department of Biochemistry and Microbiology, UCT Prague, Faculty of Food and Biochemical Technology, Prague, Czech Republic.
| |
Collapse
|
4
|
Ferencz E, Spengler G, Zupkó I, Vollár M, Zomborszki ZP, Kúsz N, Hohmann J, Kovács B, Csupor D, Laczkó-Zöld E, Csupor-Löffler B. Isolation of compounds from the roots of Ambrosia artemisiifolia and their effects on human cancer cell lines. Z NATURFORSCH C 2023; 78:299-305. [PMID: 37029666 DOI: 10.1515/znc-2022-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
Common ragweed (Ambrosia artemisiifolia L.) is an invasive plant in Europe with spreading use in the contemporary folk medicine. The chemical composition of the above-ground parts is extensively studied, however, the metabolites of the roots are less discovered. By multiple chromatographic purification of the root extracts, we isolated thiophene A (1), n-dodecene (2), taraxerol-3-O-acetate (3), α-linoleic acid (4), (+)-pinoresinol (5), and thiophene E (7,10-epithio-7,9-tridecadiene-3,5,11-triyne-1,2-diol) (6). The 1H NMR data published earlier for 1 were supplemented together with the assignment of 13C NMR data. Thiophene E (6), which is reported for the first time from this species, exerted cytotoxic and antiproliferative effects on A-431 epidermoid skin cancer cells, whereas taraxerol-3-O-acetate (3) and α-linoleic acid (4) had slight antiproliferative effect on gynecological cancer cell lines. Thiophene E (6) and taraxerol-3-O-acetate (3) displayed antiproliferative and cytotoxic effects on MRC-5 fibroblast cells. Thiophene E (6) exerted weak antibacterial activity (MIC 25 μg/mL) on MRSA ATCC 43300, on Staphylococcus aureus ATCC 25923, Escherichia coli AG100 and E. coli ATCC 25922 both thiophenes were inactive. Although the isolated compounds exerted no remarkable cytotoxic or antiproliferative activities, the effects on MRC-5 fibroblast cells highlight the necessity of further studies to support the safety of ragweed root.
Collapse
Affiliation(s)
- Elek Ferencz
- Faculty of Pharmacy, Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Department of Physical Chemistry, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gh. Marinescu 38, RO-540139 Tîrgu Mureș, Romania
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - István Zupkó
- Faculty of Pharmacy, Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Martin Vollár
- Faculty of Pharmacy, Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Zoltán Péter Zomborszki
- Faculty of Pharmacy, Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Norbert Kúsz
- Faculty of Pharmacy, Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Judit Hohmann
- Faculty of Pharmacy, Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- ELKH-USZ Biologically Active Natural Products Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Balázs Kovács
- Faculty of Pharmacy, Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Dezső Csupor
- Faculty of Pharmacy, Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Medical School, Institute for Translational Medicine, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Faculty of Pharmacy, Institute of Clinical Pharmacy, University of Szeged, Szikra u. 8, H-6725 Szeged, Hungary
| | - Eszter Laczkó-Zöld
- Department of Pharmacognosy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gh. Marinescu 38, RO-540139 Tîrgu Mureș, Romania
| | - Boglárka Csupor-Löffler
- Faculty of Pharmacy, Institute of Pharmacognosy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Medical School, Institute for Translational Medicine, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| |
Collapse
|
5
|
Guedes GMDM, Melgarejo CMA, Freitas AS, Amando BR, Costa CL, Ocadaque CJ, Gomes FIF, Bandeira SP, de Aguiar Cordeiro R, Gadelha Rocha MF, Sidrim JJC, Castelo-Branco DDSCM. Effect of promethazine on biofilms of gram-positive cocci associated with infectious endocarditis. BIOFOULING 2023; 39:189-203. [PMID: 37144566 DOI: 10.1080/08927014.2023.2202313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This study evaluated the antimicrobial activity of promethazine against Staphylococcus aureus, Staphylococcus epidermidis and Streptococcus mutans and its effect on the antimicrobial susceptibility of biofilms grown in vitro and ex vivo on porcine heart valves. Promethazine was evaluated alone and in combination with vancomycin and oxacillin against Staphylococcus spp. and vancomycin and ceftriaxone against S. mutans in planktonic form and biofilms grown in vitro and ex vivo. Promethazine minimum inhibitory concentration range was 24.4-95.31 μg/mL and minimum biofilm eradication concentration range was 781.25-3.125 μg/mL. Promethazine interacted synergistically with vancomycin, oxacillin and ceftriaxone against biofilms in vitro. Promethazine alone reduced (p < 0.05) the CFU-counts of biofilms grown on heart valves for Staphylococcus spp., but not for S. mutans, and increased (p < 0.05) the activity of vancomycin, oxacillin and ceftriaxone against biofilms of Gram-positive cocci grown ex vivo. These findings bring perspectives for repurposing promethazine as adjuvant in the treatment of infective endocarditis.
Collapse
Affiliation(s)
- Gláucia Morgana de Melo Guedes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Carliane Melo Alves Melgarejo
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Alyne Soares Freitas
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Bruno Rocha Amando
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cecília Leite Costa
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Crister José Ocadaque
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Francisco Ivanilsom Firmiano Gomes
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Silviane Praciano Bandeira
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, Brazil
- School of Veterinary Medicine, Postgraduate Program in Veterinary Sciences, State University of Ceará, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Laboratory of Emerging and Reemerging Pathogens, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
6
|
Reversal of Multidrug Resistance by Symmetrical Selenoesters in Colon Adenocarcinoma Cells. Pharmaceutics 2023; 15:pharmaceutics15020610. [PMID: 36839934 PMCID: PMC9967742 DOI: 10.3390/pharmaceutics15020610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Recently, selenium containing derivatives have attracted more attention in medicinal chemistry. In the present work, the anticancer activity of symmetrical selenoesters was investigated by studying the reversal of efflux pump-related and apoptosis resistance in sensitive and resistant human colon adenocarcinoma cells expressing the ABCB1 protein. The combined effect of the compounds with doxorubicin was demonstrated with a checkerboard assay. The ABCB1 inhibitory and the apoptosis-inducing effects of the derivatives were measured with flow cytometry. Whole transcriptome sequencing was carried out on Illumina platform upon the treatment of resistant cells with the most potent derivatives. One ketone and three methyl ester selenoesters showed synergistic or weak synergistic interaction with doxorubicin, respectively. Ketone selenoesters were the most potent ABCB1 inhibitors and apoptosis inducers. Nitrile selenoesters could induce moderate early and late apoptotic processes that could be explained by their ABCB1 modulating properties. The transcriptome analysis revealed that symmetrical selenoesters may influence the redox state of the cells and interfere with metastasis formation. It can be assumed that these symmetrical selenocompounds possess toxic, DNA-damaging effects due to the presence of two selenium atoms in the molecule, which may be augmented by the presence of symmetrical groups.
Collapse
|
7
|
Pereira D, Durães F, Szemerédi N, Freitas-da-Silva J, Pinto E, Martins-da-Costa P, Pinto M, Correia-da-Silva M, Spengler G, Sousa E, Cidade H. New Chalcone-Triazole Hybrids with Promising Antimicrobial Activity in Multidrug Resistance Strains. Int J Mol Sci 2022; 23:14291. [PMID: 36430768 PMCID: PMC9697807 DOI: 10.3390/ijms232214291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/09/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Resistance to antibiotics is an emerging problem worldwide, which leads to an increase in morbidity and mortality rates. Several mechanisms are attributed to bacterial resistance, overexpression of efflux pumps being one of the most prominent. As an attempt to develop new effective antimicrobial drugs, which could be able to act against resistant bacterial strains and considering the antimicrobial potential of flavonoids and triazolyl flavonoid derivatives, in particular chalcones, a small library of chalcone derivatives was synthesized and evaluated for its potential to act as antimicrobials and/or adjuvants in combination with antibiotics towards resistant bacteria. Although only compound 7 was able to act as antibacterial, compounds 1, 2, 4, 5, 7, and 9 revealed to be able to potentiate the activity of antibiotics in resistant bacteria. Moreover, five compounds (3, 5-8) demonstrated to be effective inhibitors of efflux pumps in Salmonella enterica serovar Typhimurium SL1344, and four compounds (1, 3, 7, and 10) showed higher ability than reserpine to inhibit biofilm formation of resistant Staphylococcus aureus 272123. Together, our results showed the potential of these compounds regarding reversion of bacterial resistance.
Collapse
Affiliation(s)
- Daniela Pereira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Joana Freitas-da-Silva
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Eugénia Pinto
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo Martins-da-Costa
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, 6725 Szeged, Hungary
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
8
|
Antimicrobial, Multidrug Resistance Reversal and Biofilm Formation Inhibitory Effect of Origanum majorana Extracts, Essential Oil and Monoterpenes. PLANTS 2022; 11:plants11111432. [PMID: 35684205 PMCID: PMC9183178 DOI: 10.3390/plants11111432] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022]
Abstract
Origanum majorana L. is a widely used medicinal plant; its distilled oil and preparations are extensively utilised in the phytotherapy and food industries. The objective of this study is to evaluate the extracts and the essential oil (EO) of Origanum majorana L, and its monoterpenes for antimicrobial, bacterial multidrug resistance reversing, and biofilm formation inhibitory potency. The composition of EO and n-hexane extract was characterized by GC-MS. In the essential oil terpinen-4-ol (24.92%), trans-sabinene hydrate (25.18%), γ-terpinene (6.48%), cis-sabinene hydrate (5.44%), p-cymene (4.72%), sabinene (4.53%), α-terpineol (4.43%), and α-terpinene (3.00%) were found as the main constituents while trans-sabinene hydrate (1.43%), and terpinen-4-ol (0.19%) were detected in the n-hexane extract besides a series of hydrocarbons. The antibacterial activity of EO and terpinen-4-ol, α-terpinene, and linalool was also assessed against sensitive and drug-resistant S. aureus, and E. coli strains with MIC values of 0.125–0.250% and 30–61 µM, respectively. In the efflux pump (EP) inhibitory assay, made by the ethidium bromide accumulation method in E. coli ATCC 25922, and AG100 and S. aureus ATCC 25923, and MRSA ATCC 43300 strains, EO exhibited substantial activity, especially in the E. coli ATCC 25922 strain. Among the EO constituents, only sabinene was an EP inhibitor in sensitive Escherichia strain. In the case of S. aureus strains, EO and sabinene hydrate exhibited moderate potency on the drug-resistant phenotype. The antibiofilm effects of the samples were tested by crystal violet staining at sub-MIC concentration. γ-Terpinene, terpinen-4-ol, sabinene, sabinene hydrate and linalool were found to be effective inhibitors of biofilm formation (inhibition 36–86%) on E. coli ATCC 25922 and S. aureus MRSA ATCC 43300, while EO was ineffective on these strains. In contrast to this, biofilms formed by E. coli AG100 and S. aureus ATCC 25923 were significantly inhibited by the EO; however, it was not affected by any of the monoterpenes. This observation suggests that the antibiofilm effect might be altered by the synergism between the components of the essential oil.
Collapse
|
9
|
Holasová K, Křížkovská B, Hoang L, Dobiasová S, Lipov J, Macek T, Křen V, Valentová K, Ruml T, Viktorová J. Flavonolignans from silymarin modulate antibiotic resistance and virulence in Staphylococcus aureus. Biomed Pharmacother 2022; 149:112806. [PMID: 35303568 DOI: 10.1016/j.biopha.2022.112806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
Antibiotic resistance is currently a serious health problem. Since the discovery of new antibiotics no longer seems to be a sufficient tool in the fight against multidrug-resistant infections, adjuvant (combination) therapy is gaining in importance as well as reducing bacterial virulence. Silymarin is a complex of flavonoids and flavonolignans known for its broad spectrum of biological activities, including its ability to modulate drug resistance in cancer. This work aimed to test eleven, optically pure silymarin flavonolignans for their ability to reverse the multidrug resistance phenotype of Staphylococcus aureus and reduce its virulence. Silybin A, 2,3-dehydrosilybin B, and 2,3-dehydrosilybin AB completely reversed antibiotic resistance at concentrations of 20 µM or less. Both 2,3-dehydrosilybin B and AB decreased the antibiotic-induced gene expression of representative efflux pumps belonging to the major facilitator (MFS), multidrug and toxic compound extrusion (MATE), and ATP-binding cassette (ABC) families. 2,3-Dehydrosilybin B also inhibited ethidium bromide accumulation and efflux in a clinical isolate whose NorA and MdeA overproduction was induced by antibiotics. Most of the tested flavonolignans reduced cell-to-cell communication on a tetrahydrofuran-borate (autoinducer-2) basis, with isosilychristin leading the way followed by 2,3-dehydrosilybin A and AB, which halved communication at 10 µM. Anhydrosilychristin was the only compound that reduced communication based on acyl-homoserine lactone (autoinducer 1), with an IC50 of 4.8 µM. Except for isosilychristin and anhydrosilychristin, all of the flavonolignans inhibited S. aureus surface colonization, with 2,3-dehydrosilybin A being the most active (IC50 10.6 µM). In conclusion, the selected flavonolignans, particularly derivatives of 2,3-dehydrosilybin B, 2,3-dehydrosilybin AB, and silybin A are non-toxic modulators of S. aureus multidrug resistance and can decrease the virulence of the bacterium, which deserves further detailed research.
Collapse
Affiliation(s)
- Kateřina Holasová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 3, Prague 166 28, Czech Republic.
| | - Bára Křížkovská
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 3, Prague 166 28, Czech Republic.
| | - Lan Hoang
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 3, Prague 166 28, Czech Republic.
| | - Simona Dobiasová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 3, Prague 166 28, Czech Republic.
| | - Jan Lipov
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 3, Prague 166 28, Czech Republic.
| | - Tomáš Macek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 3, Prague 166 28, Czech Republic.
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 3, Prague 166 28, Czech Republic.
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technická 3, Prague 166 28, Czech Republic.
| |
Collapse
|
10
|
Jiang YH, Xin WG, Yang LY, Ying JP, Zhao ZS, Lin LB, Li XZ, Zhang QL. A novel bacteriocin against Staphylococcus aureus from Lactobacillus paracasei isolated from Yunnan traditional fermented yogurt: Purification, antibacterial characterization, and antibiofilm activity. J Dairy Sci 2022; 105:2094-2107. [PMID: 35180941 DOI: 10.3168/jds.2021-21126] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/05/2021] [Indexed: 01/05/2023]
Abstract
Staphylococcus aureus and its biofilm have emerged as a significant threat to the safety of dairy products. In recent years, lactic acid bacteria (LAB) bacteriocins have been widely acknowledged as the potential natural antibacterial substance in food biopreservation due to their excellent antibacterial effects. However, few LAB bacteriocins with antibacterial and antibiofilm activity against S. aureus have been reported in dairy products. In the present study, a novel bacteriocin LSX01 of Lactobacillus paracasei LS-6 isolated from a traditional fermented yogurt produced in Yunnan, China, was purified and characterized extensively. The LSX01 possessed a molecular weight of 967.49 Da and an AA sequence of LDQAGISYT. The minimum inhibitory concentration of LSX01 against S. aureus_45 was 16.90 μg/mL, which was close to or lower than the previously reported bacteriocins. The LSX01 exhibited an extensive antimicrobial spectrum against both gram-positive and gram-negative bacteria. Moreover, LSX01 exhibited excellent tolerance to heat and acid-base treatments, and sensitivity to the proteolytic enzymes, such as pepsin and proteinase K. Furthermore, the treatment of S. aureus_45 planktonic cells with LSX01 significantly reduced their metabolic activity and disrupted the cell membrane integrity. Scan electron microscopy results demonstrated that LSX01 induced cytoplasmic content leakage and cell deformation. Additionally, biofilm formation of S. aureus_45 was also significantly inhibited by LSX01. Overall, the results suggested that the novel LAB bacteriocin LSX01 possessed antibacterial activity and antibiofilm activity against S. aureus and, hence, could have potential for improving safety of dairy products.
Collapse
Affiliation(s)
- Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming 650500, China
| | - Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming 650500, China
| | - Lin-Yu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming 650500, China
| | - Jian-Ping Ying
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming 650500, China
| | - Zi-Shun Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming 650500, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture and Qinghai Academy of Animal and Veterinary Science, Qinghai University, Qinghai Xining 810000, China.
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Kunming 650500, China.
| |
Collapse
|
11
|
Jiang YH, Yang LY, Xin WG, Zhang QL. Combined antibacterial and antibiofilm activity of phenyllactic acid and bacteriocin XJS01 against Shigella flexneri. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Jiang YH, Xin WG, Zhang QL, Lin LB, Deng XY. A Novel Bacteriocin Against Shigella flexneri From Lactiplantibacillus plantarum Isolated From Tilapia Intestine: Purification, Antibacterial Properties and Antibiofilm Activity. Front Microbiol 2022; 12:779315. [PMID: 35069481 PMCID: PMC8769287 DOI: 10.3389/fmicb.2021.779315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Few bacteriocins with antibacterial activity against Shigella flexneri have been reported. Here, a novel bacteriocin (LFX01) produced by Lactiplantibacillus plantarum strain LF-8 from the intestine of tilapia was purified and extensively characterized. LFX01 possesses a molecular weight of 1049.56 Da and an amino acid sequence of I-T-G-G-P-A-V-V-H-Q-A. LFX01 significantly inhibited S. flexneri strain 14 (S. flexneri_14) growth. Moreover, it exhibited excellent stability under heat and acid-base stress, and presented sensitivity to a variety of proteases, such as proteinase K, pepsin, and trypsin. The minimum inhibitory concentration (MIC) of LFX01 against S. flexneri_14 was 12.65 μg/mL, which was smaller than that of most of the previously found bacteriocins. Furthermore, LFX01 significantly inhibited (p < 0.05) S. flexneri_14 cells and decreased their cell viability. In addition, LFX01 could significantly (p < 0.05) inhibit biofilm formation of S. flexneri_14. Scanning electron microscopy analysis presented that the cell membrane permeability of S. flexneri_14 was demolished by LFX01, leading to cytoplasmic contents leakage and cell rupture death. In summary, a novel bacteriocin of lactic acid bacteria (LAB) was found, which could effectively control S. flexneri in both planktonic and biofilm states.
Collapse
Affiliation(s)
- Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
13
|
Enantioselectivity of Chiral Derivatives of Xanthones in Virulence Effects of Resistant Bacteria. Pharmaceuticals (Basel) 2021; 14:ph14111141. [PMID: 34832923 PMCID: PMC8623869 DOI: 10.3390/ph14111141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/04/2022] Open
Abstract
Antimicrobial peptides are one of the lines of defense produced by several hosts in response to bacterial infections. Inspired by them and recent discoveries of xanthones as bacterial efflux pump inhibitors, chiral amides with a xanthone scaffold were planned to be potential antimicrobial adjuvants. The chiral derivatives of xanthones were obtained by peptide coupling reactions between suitable xanthones with enantiomerically pure building blocks, yielding derivatives with high enantiomeric purity. Among 18 compounds investigated for their antimicrobial activity against reference strains of bacteria and fungi, antibacterial activity for the tested strains was not found. Selected compounds were also evaluated for their potential to inhibit bacterial efflux pumps. Compound (R,R)-8 inhibited efflux pumps in the Gram-positive model tested and three compounds, (S,S)-8, (R)-17 and (R,S)-18, displayed the same activity in the Gram-negative strain used. Studies were performed on the inhibition of biofilm formation and quorum-sensing, to which the enantiomeric pair 8 displayed activity for the latter. To gain a better understanding of how the active compounds bind to the efflux pumps, docking studies were performed. Hit compounds were proposed for each activity, and it was shown that enantioselectivity was noticeable and must be considered, as enantiomers displayed differences in activity.
Collapse
|
14
|
Durães F, Szemerédi N, Kumla D, Pinto M, Kijjoa A, Spengler G, Sousa E. Metabolites from Marine-Derived Fungi as Potential Antimicrobial Adjuvants. Mar Drugs 2021; 19:475. [PMID: 34564137 PMCID: PMC8470461 DOI: 10.3390/md19090475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022] Open
Abstract
Marine-derived fungi constitute an interesting source of bioactive compounds, several of which exhibit antibacterial activity. These acquire special importance, considering that antimicrobial resistance is becoming more widespread. The overexpression of efflux pumps, capable of expelling antimicrobials out of bacterial cells, is one of the most worrisome mechanisms. There has been an ongoing effort to find not only new antimicrobials, but also compounds that can block resistance mechanisms which can be used in combination with approved antimicrobial drugs. In this work, a library of nineteen marine natural products, isolated from marine-derived fungi of the genera Neosartorya and Aspergillus, was evaluated for their potential as bacterial efflux pump inhibitors as well as the antimicrobial-related mechanisms, such as inhibition of biofilm formation and quorum-sensing. Docking studies were performed to predict their efflux pump action. These compounds were also tested for their cytotoxicity in mouse fibroblast cell line NIH/3T3. The results obtained suggest that the marine-derived fungal metabolites are a promising source of compounds with potential to revert antimicrobial resistance and serve as an inspiration for the synthesis of new antimicrobial drugs.
Collapse
Affiliation(s)
- Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (M.P.)
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.K.); (A.K.)
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary;
| | - Decha Kumla
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.K.); (A.K.)
- ICBAS–Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (M.P.)
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.K.); (A.K.)
| | - Anake Kijjoa
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.K.); (A.K.)
- ICBAS–Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (M.P.)
- CIIMAR–Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.K.); (A.K.)
| |
Collapse
|
15
|
Durães F, Resende DISP, Palmeira A, Szemerédi N, Pinto MMM, Spengler G, Sousa E. Xanthones Active against Multidrug Resistance and Virulence Mechanisms of Bacteria. Antibiotics (Basel) 2021; 10:600. [PMID: 34069329 PMCID: PMC8158687 DOI: 10.3390/antibiotics10050600] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
The emergence of multidrug and extensively drug-resistant pathogenic bacteria able to resist to the action of a wide range of antibiotics is becoming a growing problem for public health. The search for new compounds with the potential to help in the reversion of bacterial resistance plays an important role in current medicinal chemistry research. Under this scope, bacterial efflux pumps are responsible for the efflux of antimicrobials, and their inhibition could reverse resistance. In this study, the multidrug resistance reversing activity of a series of xanthones was investigated. Firstly, docking studies were performed in the AcrAB-TolC efflux pump and in a homology model of the NorA pump. Then, the effects of twenty xanthone derivatives on bacterial growth were evaluated in Staphylococcus aureus 272123 and in the acrA gene-inactivated mutant Salmonella enterica serovar Typhimurium SL1344 (SE03). Their efflux pump inhibitory properties were assessed using real-time fluorimetry. Assays concerning the activity of these compounds towards the inhibition of biofilm formation and quorum sensing have also been performed. Results showed that a halogenated phenylmethanamine xanthone derivative displayed an interesting profile, as far as efflux pump inhibition and biofilm formation were concerned. To the best of our knowledge, this is the first report of xanthones as potential efflux pump inhibitors.
Collapse
Affiliation(s)
- Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (D.I.S.P.R.); (A.P.); (M.M.M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Diana I. S. P. Resende
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (D.I.S.P.R.); (A.P.); (M.M.M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (D.I.S.P.R.); (A.P.); (M.M.M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Faculty of Medicine, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary;
| | - Madalena M. M. Pinto
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (D.I.S.P.R.); (A.P.); (M.M.M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Faculty of Medicine, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary;
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry (LQOF), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (F.D.); (D.I.S.P.R.); (A.P.); (M.M.M.P.)
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
16
|
Ketone- and Cyano-Selenoesters to Overcome Efflux Pump, Quorum-Sensing, and Biofilm-Mediated Resistance. Antibiotics (Basel) 2020; 9:antibiotics9120896. [PMID: 33322639 PMCID: PMC7763688 DOI: 10.3390/antibiotics9120896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of drug-resistant pathogens leads to a gradual decline in the efficacy of many antibacterial agents, which poses a serious problem for proper therapy. Multidrug resistance (MDR) mechanisms allow resistant bacteria to have limited uptake of drugs, modification of their target molecules, drug inactivation, or release of the drug into the extracellular space by efflux pumps (EPs). In previous studies, selenoesters have proved to be promising derivatives with a noteworthy antimicrobial activity. On the basis of these results, two series of novel selenoesters were synthesized to achieve more potent antibacterial activity on Gram-positive and Gram-negative bacteria. Fifteen selenoesters (eight ketone-selenoesters and seven cyano-selenoesters) were investigated with regards to their efflux pump-inhibiting, anti-quorum-sensing (QS), and anti-biofilm effects in vitro. According to the results of the antibacterial activity, the ketone-selenoesters proved to be more potent antibacterial compounds than the cyano-selenoesters. With regard to efflux pump inhibition, one cyano-selenoester on methicillin-resistant S. aureus and one ketone-selenoester on Salmonella Typhimurium were potent inhibitors. The biofilm inhibitory capacity and the ability of the derivatives to disrupt mature biofilms were noteworthy in all the experimental systems applied. Regarding QS inhibition, four ketone-selenoesters and three cyano-selenoesters exerted a noteworthy effect on Vibrio campbellii strains.
Collapse
|