1
|
Guo Z, Sun J, Ma Q, Li M, Dou Y, Yang S, Gao X. Improving Surfactin Production in Bacillus subtilis 168 by Metabolic Engineering. Microorganisms 2024; 12:998. [PMID: 38792827 PMCID: PMC11124408 DOI: 10.3390/microorganisms12050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Surfactin is widely used in the petroleum extraction, cosmetics, biopharmaceuticals and agriculture industries. It possesses antibacterial and antiviral activities and can reduce interfacial tension. Bacillus are commonly used as production chassis, but wild-type Bacillus subtilis 168 cannot synthesise surfactin. In this study, the phosphopantetheinyl transferase (PPTase) gene sfp* (with a T base removed) was overexpressed and enzyme activity was restored, enabling B. subtilis 168 to synthesise surfactin with a yield of 747.5 ± 6.5 mg/L. Knocking out ppsD and yvkC did not enhance surfactin synthesis. Overexpression of predicted surfactin transporter gene yfiS increased its titre to 1060.7 ± 89.4 mg/L, while overexpression of yerP, ycxA and ycxA-efp had little or negative effects on surfactin synthesis, suggesting YfiS is involved in surfactin efflux. By replacing the native promoter of the srfA operon encoding surfactin synthase with three promoters, surfactin synthesis was significantly reduced. However, knockout of the global transcriptional regulator gene codY enhanced the surfactin titre to 1601.8 ± 91.9 mg/L. The highest surfactin titre reached 3.89 ± 0.07 g/L, with the yield of 0.63 ± 0.02 g/g DCW, after 36 h of fed-batch fermentation in 5 L fermenter. This study provides a reference for further understanding surfactin synthesis and constructing microbial cell factories.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaomei Yang
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo 255049, China; (Z.G.); (J.S.); (Q.M.); (M.L.); (Y.D.)
| | - Xiuzhen Gao
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo 255049, China; (Z.G.); (J.S.); (Q.M.); (M.L.); (Y.D.)
| |
Collapse
|
2
|
Camba C, Walter-Lakes B, Digal P, Taheri-Araghi S, Bezryadina A. Biofilm formation and manipulation with optical tweezers. BIOMEDICAL OPTICS EXPRESS 2024; 15:1181-1191. [PMID: 38404331 PMCID: PMC10890877 DOI: 10.1364/boe.510836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 02/27/2024]
Abstract
Some bacterial species form biofilms in suboptimal growth and environmental conditions. Biofilm structures allow the cells not only to optimize growth with nutrient availability but also to defend each other against external stress, such as antibiotics. Medical and bioengineering implications of biofilms have led to an increased interest in the regulation of bacterial biofilm formation. Prior research has primarily focused on mechanical and chemical approaches for stimulating and controlling biofilm formation, yet optical techniques are still largely unexplored. In this paper, we investigate the biofilm formation of Bacillus subtilis in a minimum biofilm-promoting medium (MSgg media) and explore the potential of optical trapping in regulating bacterial aggregation and biofilm development. Specifically, we determine the most advantageous stage of bacterial biofilm formation for optical manipulation and investigate the impact of optical trapping at different wavelengths on the aggregation of bacterial cells and the formation of biofilm. The investigation of optically regulated biofilm formation with optical tweezers presents innovative methodologies for the stimulation and suppression of biofilm growth through the application of lasers.
Collapse
Affiliation(s)
- Czarlyn Camba
- Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Brooke Walter-Lakes
- Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Phillip Digal
- Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Sattar Taheri-Araghi
- Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| | - Anna Bezryadina
- Department of Physics and Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330, USA
| |
Collapse
|
3
|
Tang Z, Zhang H, Xiong J, Li Y, Luo W. Enhanced iturin a production in a two-compartment biofilm reactor by Bacillus velezensis ND. Front Bioeng Biotechnol 2023; 11:1102786. [PMID: 36741766 PMCID: PMC9893019 DOI: 10.3389/fbioe.2023.1102786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
In this study, a two-compartment biofilm reactor was designed for iturin A production. The biofilm reactor consists of a stirred-tank fermentor containing exclusively suspended cells and a packing column where the biofilm is attached. Polyester fiber with sphere shape and rough surfaces was chosen as the carrier of biofilm in packing column. Batch, fed-batch, and repeated-batch fermentation using Bacillus velezensis ND in the biofilm reactor were studied. Compared to conventional suspended cell fermentations, the productivity of iturin A in batch and fed-batch biofilm fermentation were increased by 66.7% and 63.3%, respectively. Maximum itutin A concentration of 6.8 ± 0.1 g/L and productivity of 46.9 ± 0.2 mg/L/h were obtained in fed-batch biofilm fermentation. Repeated-batch fermentation showed high stability, with almost same profile as batch fermentation. After a step-wise temperature control strategy was introduced in the biofilm reactor, productivity of iturin A was increased by 131.9% compared to suspended cell reactor. This superior performance of biofilm reactor confirms that it has great potential in industrial production of iturin A.
Collapse
Affiliation(s)
- Zhongmin Tang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Huili Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China,*Correspondence: Huili Zhang,
| | - Jie Xiong
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Yang Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Wei Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Théatre A, Cano-Prieto C, Bartolini M, Laurin Y, Deleu M, Niehren J, Fida T, Gerbinet S, Alanjary M, Medema MH, Léonard A, Lins L, Arabolaza A, Gramajo H, Gross H, Jacques P. The Surfactin-Like Lipopeptides From Bacillus spp.: Natural Biodiversity and Synthetic Biology for a Broader Application Range. Front Bioeng Biotechnol 2021; 9:623701. [PMID: 33738277 PMCID: PMC7960918 DOI: 10.3389/fbioe.2021.623701] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 11/21/2022] Open
Abstract
Surfactin is a lipoheptapeptide produced by several Bacillus species and identified for the first time in 1969. At first, the biosynthesis of this remarkable biosurfactant was described in this review. The peptide moiety of the surfactin is synthesized using huge multienzymatic proteins called NonRibosomal Peptide Synthetases. This mechanism is responsible for the peptide biodiversity of the members of the surfactin family. In addition, on the fatty acid side, fifteen different isoforms (from C12 to C17) can be incorporated so increasing the number of the surfactin-like biomolecules. The review also highlights the last development in metabolic modeling and engineering and in synthetic biology to direct surfactin biosynthesis but also to generate novel derivatives. This large set of different biomolecules leads to a broad spectrum of physico-chemical properties and biological activities. The last parts of the review summarized the numerous studies related to the production processes optimization as well as the approaches developed to increase the surfactin productivity of Bacillus cells taking into account the different steps of its biosynthesis from gene transcription to surfactin degradation in the culture medium.
Collapse
Affiliation(s)
- Ariane Théatre
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, Gembloux, Belgium
| | - Carolina Cano-Prieto
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Marco Bartolini
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias, Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Yoann Laurin
- Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium.,Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Joachim Niehren
- Inria Lille, and BioComputing Team of CRISTAL Lab (CNRS UMR 9189), Lille, France
| | - Tarik Fida
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Saïcha Gerbinet
- Chemical Engineering, Products, Environment, and Processes, University of Liège, Liège, Belgium
| | - Mohammad Alanjary
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| | - Angélique Léonard
- Chemical Engineering, Products, Environment, and Processes, University of Liège, Liège, Belgium
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Ana Arabolaza
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias, Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias, Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Philippe Jacques
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, Gembloux, Belgium
| |
Collapse
|
8
|
Pršić J, Ongena M. Elicitors of Plant Immunity Triggered by Beneficial Bacteria. FRONTIERS IN PLANT SCIENCE 2020; 11:594530. [PMID: 33304371 PMCID: PMC7693457 DOI: 10.3389/fpls.2020.594530] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 05/19/2023]
Abstract
The molecular basis of plant immunity triggered by microbial pathogens is being well-characterized as a complex sequential process leading to the activation of defense responses at the infection site, but which may also be systemically expressed in all organs, a phenomenon also known as systemic acquired resistance (SAR). Some plant-associated and beneficial bacteria are also able to stimulate their host to mount defenses against pathogen ingress via the phenotypically similar, induced systemic resistance phenomenon. Induced systemic resistance resembles SAR considering its mechanistic principle as it successively involves recognition at the plant cell surface, stimulation of early cellular immune-related events, systemic signaling via a fine-tuned hormonal cross-talk and activation of defense mechanisms. It thus represents an indirect but efficient mechanism by which beneficial bacteria with biocontrol potential improve the capacity of plants to restrict pathogen invasion. However, according to our current vision, induced systemic resistance is specific considering some molecular aspects underpinning these different steps. Here we overview the chemical diversity of compounds that have been identified as induced systemic resistance elicitors and thereby illustrating the diversity of plants species that are responsive as well as the range of pathogens that can be controlled via this phenomenon. We also point out the need for further investigations allowing better understanding how these elicitors are sensed by the host and the diversity and nature of the stimulated defense mechanisms.
Collapse
|