1
|
Peng B, Li H, Peng X. Understanding metabolic resistance strategy of clinically isolated antibiotic-resistant bacteria by proteomic approach. Expert Rev Proteomics 2024:1-10. [PMID: 39387182 DOI: 10.1080/14789450.2024.2413439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Understanding the metabolic regulatory mechanisms leading to antibacterial resistance is important to develop effective control measures. AREAS COVERED In this review, we summarize the progress on metabolic mechanisms of antibiotic resistance in clinically isolated bacteria, as revealed using proteomic approaches. EXPERT OPINION Proteomic approaches are effective tools for uncovering clinically significant bacterial metabolic responses to antibiotics. Proteomics can disclose the associations between metabolic proteins, pathways, and networks with antibiotic resistance, and help identify their functional impact. The mechanisms by which metabolic proteins control the four generally recognized resistance mechanisms (decreased influx and targets, and increased efflux and enzymatic degradation) are particularly important. The proposed mechanism of reprogramming proteomics via key metabolites to enhance the killing efficiency of existing antibiotics needs attention.
Collapse
Affiliation(s)
- Bo Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuanxian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Chenhaka LH, Van Wyk DAB, Mienie C, Bezuidenhout CC, Lekota KE. The phylogenomic landscape of extended-spectrum β-lactamase producing Citrobacter species isolated from surface water. BMC Genomics 2023; 24:755. [PMID: 38062371 PMCID: PMC10704729 DOI: 10.1186/s12864-023-09867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Citrobacter species are Gram-negative opportunistic pathogens commonly reported in nosocomial-acquired infections. This study characterised four Citrobacter species that were isolated from surface water in the North West Province, South Africa. RESULTS Phenotypic antimicrobial susceptibility profiles of the isolates demonstrated their ability to produce the extended-spectrum β-lactamase (ESBL). Whole genomes were sequenced to profile antibiotic resistance and virulence genes, as well as mobile genetic elements. In silico taxonomic identification was conducted by using multi-locus sequence typing and average nucleotide identity. A pangenome was used to determine the phylogenomic landscape of the Citrobacter species by using 109 publicly available genomes. The strains S21 and S23 were identified as C. braakii, while strains S24 and S25 were C. murliniae and C. portucalensis, respectively. Comparative genomics and sequenced genomes of the ESBL-producing isolates consisted of n = 91; 83% Citrobacter species in which bla-CMY-101 (n = 19; 32,2%) and bla-CMY-59 (n = 12; 38,7%) were prevalent in C. braakii, and C. portucalensis strains, respectively. Macrolide (acrAB-TolC, and mdtG) and aminoglycoside (acrD) efflux pumps genes were identified in the four sequenced Citrobacter spp. isolates. The quinolone resistance gene, qnrB13, was exclusive to the C. portucalensis S25 strain. In silico analysis detected plasmid replicon types IncHI1A, IncP, and Col(VCM04) in C. murliniae S24 and C. portucalensis S25, respectively. These potentially facilitate the T4SS secretion system in Citrobacter species. In this study, the C. braakii genomes could be distinguished from C. murliniae and C. portucalensis on the basis of gene encoding for cell surface localisation of the CPS (vexC) and identification of genes involved in capsule polymer synthesis (tviB and tviE). A cluster for the salmochelin siderophore system (iro-BCDEN) was found in C. murliniae S24. This is important when it comes to the pathogenicity pathway that confers an advantage in colonisation. CONCLUSIONS The emerging and genomic landscapes of these ESBL-producing Citrobacter species are of significant concern due to their dissemination potential in freshwater systems. The presence of these ESBL and multidrug-resistant (MDR) pathogens in aquatic environments is of One Health importance, since they potentially impact the clinical domain, that is, in terms of human health and the agricultural domain, that is, in terms of animal health and food production as well as the environmental domain.
Collapse
Affiliation(s)
- Lee-Hendra Chenhaka
- Unit for Environment Science and Management, Microbiology, North-West University, Potchefstroom campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Deidré A B Van Wyk
- Unit for Environment Science and Management, Microbiology, North-West University, Mahikeng campus, Private Bag X2046, Mahikeng, 2745, South Africa.
| | - Charlotte Mienie
- Unit for Environment Science and Management, Microbiology, North-West University, Potchefstroom campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Cornelius C Bezuidenhout
- Unit for Environment Science and Management, Microbiology, North-West University, Potchefstroom campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Kgaugelo E Lekota
- Unit for Environment Science and Management, Microbiology, North-West University, Potchefstroom campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
3
|
Jaén-Luchoro D, Karlsson R, Busquets A, Piñeiro-Iglesias B, Karami N, Marathe NP, Moore ERB. Knockout of Targeted Plasmid-Borne β-Lactamase Genes in an Extended-Spectrum-β-Lactamase-Producing Escherichia coli Strain: Impact on Resistance and Proteomic Profile. Microbiol Spectr 2023; 11:e0386722. [PMID: 36622237 PMCID: PMC9927464 DOI: 10.1128/spectrum.03867-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Resistance to β-lactams is known to be multifactorial, although the underlying mechanisms are not well established. The aim of our study was to develop a system for assessing the phenotypic and proteomic responses of bacteria to antibiotic stress as a result of the loss of selected antimicrobial resistance genes. We applied homologous recombination to knock out plasmid-borne β-lactamase genes (blaOXA-1, blaTEM-1, and blaCTX-M15) in Escherichia coli CCUG 73778, generating knockout clone variants lacking the respective deleted β-lactamases. Quantitative proteomic analyses were performed on the knockout variants and the wild-type strain, using bottom-up liquid chromatography tandem mass spectrometry (LC-MS/MS), after exposure to different concentrations of cefadroxil. Loss of the blaCTX-M-15 gene had the greatest impact on the resulting protein expression dynamics, while losses of blaOXA-1 and blaTEM-1 affected fewer proteins' expression levels. Proteins involved in antibiotic resistance, cell membrane integrity, stress, and gene expression and unknown function proteins exhibited differential expression. The present study provides a framework for studying protein expression in response to antibiotic exposure and identifying the genomic, proteomic, and phenotypic impacts of resistance gene loss. IMPORTANCE The critical situation regarding antibiotic resistance requires a more in-depth effort for understanding underlying mechanisms involved in antibiotic resistance, beyond just detecting resistance genes. The methodology presented in this work provides a framework for knocking out selected resistance factors, to study the adjustments of the bacterium in response to a particular antibiotic stress, elucidating the genetic response and proteins that are mobilized. The protocol uses MS-based determination of the proteins that are expressed in response to an antibiotic, enabling the selection of strong candidates representing putative resistance factors or mechanisms and providing a basis for future studies to understand their implications in antibiotic resistance. This allows us to better understand how the cell responds to the presence of the antibiotic when a specific gene is lost and, consequently, identify alternative targets for possible future treatment development.
Collapse
Affiliation(s)
- Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg, Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Nanoxis Consulting AB, Gothenburg, Sweden
| | - Antonio Busquets
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Beatriz Piñeiro-Iglesias
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg, Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nahid Karami
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | | | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Culture Collection University of Gothenburg, Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
4
|
Crits-Christoph A, Hallowell HA, Koutouvalis K, Suez J. Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome. Gut Microbes 2022; 14:2055944. [PMID: 35332832 PMCID: PMC8959533 DOI: 10.1080/19490976.2022.2055944] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A global rise in antimicrobial resistance among pathogenic bacteria has proved to be a major public health threat, with the rate of multidrug-resistant bacterial infections increasing over time. The gut microbiome has been studied as a reservoir of antibiotic resistance genes (ARGs) that can be transferred to bacterial pathogens via horizontal gene transfer (HGT) of conjugative plasmids and mobile genetic elements (the gut resistome). Advances in metagenomic sequencing have facilitated the identification of resistome modulators, including live microbial therapeutics such as probiotics and fecal microbiome transplantation that can either expand or reduce the abundances of ARG-carrying bacteria in the gut. While many different gut microbes encode for ARGs, they are not uniformly distributed across, or transmitted by, various members of the microbiome, and not all are of equal clinical relevance. Both experimental and theoretical approaches in microbial ecology have been applied to understand differing frequencies of ARG horizontal transfer between commensal microbes as well as between commensals and pathogens. In this commentary, we assess the evidence for the role of commensal gut microbes in encoding antimicrobial resistance genes, the degree to which they are shared both with other commensals and with pathogens, and the host and environmental factors that can impact resistome dynamics. We further discuss novel sequencing-based approaches for identifying ARGs and predicting future transfer events of clinically relevant ARGs from commensals to pathogens.
Collapse
Affiliation(s)
- Alexander Crits-Christoph
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Haley Anne Hallowell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kalia Koutouvalis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA,CONTACT Jotham Suez Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, Maryland, USA, 21205
| |
Collapse
|
5
|
Blumenscheit C, Pfeifer Y, Werner G, John C, Schneider A, Lasch P, Doellinger J. Unbiased Antimicrobial Resistance Detection from Clinical Bacterial Isolates Using Proteomics. Anal Chem 2021; 93:14599-14608. [PMID: 34697938 DOI: 10.1021/acs.analchem.1c00594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antimicrobial resistance (AMR) poses an increasing challenge for therapy and clinical management of bacterial infections. Currently, antimicrobial resistance detection relies on phenotypic assays, which are performed independently from species identification. Sequencing-based approaches are possible alternatives for AMR detection, although the analysis of proteins should be superior to gene or transcript sequencing for phenotype prediction as the actual resistance to antibiotics is almost exclusively mediated by proteins. In this proof-of-concept study, we present an unbiased proteomics workflow for detecting both bacterial species and AMR-related proteins in the absence of secondary antibiotic cultivation within <4 h from a primary culture. The workflow was designed to meet the needs in clinical microbiology. It introduces a new data analysis concept for bacterial proteomics, and a software (rawDIAtect) for the prediction and reporting of AMR from peptide identifications. The method was validated using a sample cohort of 7 bacterial species and 11 AMR determinants represented by 13 protein isoforms, which resulted in a sensitivity of 98% and a specificity of 100%.
Collapse
Affiliation(s)
- Christian Blumenscheit
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), 13353 Berlin, Germany
| | - Yvonne Pfeifer
- Nosocomial Pathogens and Antibiotic Resistance (FG13), Robert Koch-Institute, 38855 Wernigerode, Germany
| | - Guido Werner
- Nosocomial Pathogens and Antibiotic Resistance (FG13), Robert Koch-Institute, 38855 Wernigerode, Germany
| | - Charlyn John
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), 13353 Berlin, Germany
| | - Andy Schneider
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), 13353 Berlin, Germany
| | - Peter Lasch
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), 13353 Berlin, Germany
| | - Joerg Doellinger
- Robert Koch-Institute, Centre for Biological Threats and Special Pathogens, Proteomics and Spectroscopy (ZBS6), 13353 Berlin, Germany
| |
Collapse
|
6
|
Chen Z, Erickson DL, Meng J. Polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads to improve genomic analyses. Genomics 2021; 113:1366-1377. [PMID: 33716184 DOI: 10.1016/j.ygeno.2021.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/18/2022]
Abstract
Oxford Nanopore sequencing has been widely used to achieve complete genomes of bacterial pathogens. However, the error rates of Oxford Nanopore long reads are high. Various polishing algorithms using Illumina short reads to correct the errors in Oxford Nanopore long-read assemblies have been developed. The impact of polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads on improving genomic analyses was evaluated using both simulated and real reads. Ten species (10 strains) were selected for simulated reads, while real reads were tested on 11 species (11 strains). Oxford Nanopore long reads were assembled with Unicycler to produce a draft assembly, followed by three rounds of polishing with Illumina short reads using two polishing tools, Pilon and NextPolish. One round of NextPolish polishing generated genome completeness and accuracy parameters similar to the reference genomes, whereas two or three rounds of Pilon polishing were needed, though contiguity remained unchanged after polishing. The polished assemblies of Escherichia coli O157:H7, Salmonella Typhimurium, and Cronobacter sakazakii with simulated reads did not provide accurate plasmid identifications. One round of NextPolish polishing was needed for accurately identifying plasmids in Staphylococcus aureus and E. coli O26:H11 with real reads, whereas one and two rounds of Pilon polishing were necessary for these two strains, respectively. Polishing failed to provide an accurate antimicrobial resistance (AMR) genotype for S. aureus with real reads. One round of polishing recovered an accurate AMR genotype for Klebsiella pneumoniae with real reads. The reference genome and draft assembly of Citrobacter braakii with real reads differed, which carried blaCMY-83 and fosA6, respectively, while both genes were present after one round of polishing. However, polishing did not improve the assembly of E. coli O26:H11 with real reads to achieve numbers of virulence genes similar to the reference genome. The draft and polished assemblies showed a phylogenetic tree topology comparable with the reference genomes. For multilocus sequence typing and pan-genome analyses, one round of NextPolish polishing was sufficient to obtain accurate results, while two or three rounds of Pilon polishing were needed. Overall, NextPolish outperformed Pilon for polishing the Oxford Nanopore long-read assemblies of bacterial pathogens, though both polishing strategies improved genomic analyses compared to the draft assemblies.
Collapse
Affiliation(s)
- Zhao Chen
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA
| | - David L Erickson
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA; Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
7
|
Zhang D, Zhang Y, Yin F, Qin Q, Bi H, Liu B, Qiao L. Microfluidic filter device coupled mass spectrometry for rapid bacterial antimicrobial resistance analysis. Analyst 2020; 146:515-520. [PMID: 33215621 DOI: 10.1039/d0an01876g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The problem of antimicrobial resistance (AMR) is becoming increasingly serious. Bacteria producing extended spectrum beta-lactamase (ESBL), which can hydrolyze beta-lactam antibiotics, are among the most important drug resistant bacteria. Rapid AMR analysis methods are essential for identifying antibiotic resistant bacteria, which is of significant positive value to the clinical therapy of infectious disease. We developed a platform which integrates a sandwich microfluidic filter device with electrospray ionization mass spectrometry (ESI-MS). Bacterial cells were loaded in the sandwich microfluidic chip and antibiotic drugs were injected to pass through the blocked bacterial cells. By online ESI-MS analysis of the antibiotic drugs and their hydrolysis products, the AMR of the bacteria can be assessed within 30 minutes. Four Escherichia coli strains, namely two ESBL-positive and two ESBL-negative, were successfully discriminated using ampicillin and the third generation cephalosporin ceftriaxone. Considering the simplicity and high efficiency of the assay, the microfluidic chip integrated online ESI-MS system is promising in the rapid clinical diagnosis of ESBL-producing bacteria.
Collapse
Affiliation(s)
- Dongxue Zhang
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China.
| | | | | | | | | | | | | |
Collapse
|