1
|
Azoicai A, Lupu A, Alexoae MM, Starcea IM, Mocanu A, Lupu VV, Mitrofan EC, Nedelcu AH, Tepordei RT, Munteanu D, Mitrofan C, Salaru DL, Ioniuc I. Lung microbiome: new insights into bronchiectasis' outcome. Front Cell Infect Microbiol 2024; 14:1405399. [PMID: 38895737 PMCID: PMC11183332 DOI: 10.3389/fcimb.2024.1405399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The present treatments for bronchiectasis, which is defined by pathological dilatation of the airways, are confined to symptom relief and minimizing exacerbations. The condition is becoming more common worldwide. Since the disease's pathophysiology is not entirely well understood, developing novel treatments is critically important. The interplay of chronic infection, inflammation, and compromised mucociliary clearance, which results in structural alterations and the emergence of new infection, is most likely responsible for the progression of bronchiectasis. Other than treating bronchiectasis caused by cystic fibrosis, there are no approved treatments. Understanding the involvement of the microbiome in this disease is crucial, the microbiome is defined as the collective genetic material of all bacteria in an environment. In clinical practice, bacteria in the lungs have been studied using cultures; however, in recent years, researchers use next-generation sequencing methods, such as 16S rRNA sequencing. Although the microbiome in bronchiectasis has not been entirely investigated, what is known about it suggests that Haemophilus, Pseudomonas and Streptococcus dominate the lung bacterial ecosystems, they present significant intraindividual stability and interindividual heterogeneity. Pseudomonas and Haemophilus-dominated microbiomes have been linked to more severe diseases and frequent exacerbations, however additional research is required to fully comprehend the role of microbiome in the evolution of bronchiectasis. This review discusses recent findings on the lung microbiota and its association with bronchiectasis.
Collapse
Affiliation(s)
- Alice Azoicai
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ancuta Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Monica Mihaela Alexoae
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Iuliana Magdalena Starcea
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Adriana Mocanu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | | | - Alin Horatiu Nedelcu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Razvan Tudor Tepordei
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Dragos Munteanu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Costica Mitrofan
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Ileana Ioniuc
- Mother and Child Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
2
|
He J, Mao N, Lyu W, Zhou S, Zhang Y, Liu Z, Xu Z. Association between oral microbiome and five types of respiratory infections: a two-sample Mendelian randomization study in east Asian population. Front Microbiol 2024; 15:1392473. [PMID: 38659993 PMCID: PMC11039966 DOI: 10.3389/fmicb.2024.1392473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Objective To explore the causal relationship between the oral microbiome and specific respiratory infections including tonsillitis, chronic sinusitis, bronchiectasis, bronchitis, and pneumonia, assessing the impact of genetic variations associated with the oral microbiome. Methods Mendelian randomization was used to analyze genetic variations, leveraging data from genome-wide association studies in an East Asian cohort to identify connections between specific oral microbiota and respiratory infections. Results Our analysis revealed that Prevotella, Streptococcus, Fusobacterium, Pauljensenia, and Capnocytophaga play crucial roles in influencing respiratory infections. Prevotella is associated with both promoting bronchitis and inhibiting pneumonia and tonsillitis, with a mixed effect on chronic sinusitis. Streptococcus and Fusobacterium show varied impacts on respiratory diseases, with Fusobacterium promoting chronic sinusitis, bronchiectasis, and bronchitis. Conversely, Pauljensenia and Capnocytophaga are linked to reduced bronchitis and tonsillitis, and inhibited pneumonia and bronchitis, respectively. Discussion These findings underscore the significant impact of the oral microbiome on respiratory health, suggesting potential strategies for disease prevention and management through microbiome targeting. The study highlights the complexity of microbial influences on respiratory infections and the importance of further research to elucidate these relationships.
Collapse
Affiliation(s)
- Jiawei He
- Institute of Epidemic Diseases, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ningfeng Mao
- Institute of Epidemic Diseases, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wenliang Lyu
- Institute of Epidemic Diseases, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Shuhan Zhou
- Institute of Epidemic Diseases, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yang Zhang
- Institute of Epidemic Diseases, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Zhiyi Liu
- Institute of Epidemic Diseases, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Zixuan Xu
- Institute of Epidemic Diseases, Hubei University of Chinese Medicine, Wuhan, Hubei, China
- School of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
3
|
Elzayat H, Malik T, Al-Awadhi H, Taha M, Elghazali G, Al-Marzooq F. Deciphering salivary microbiome signature in Crohn's disease patients with different factors contributing to dysbiosis. Sci Rep 2023; 13:19198. [PMID: 37932491 PMCID: PMC10628307 DOI: 10.1038/s41598-023-46714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory bowel disease. An imbalanced microbiome (dysbiosis) can predispose to many diseases including CD. The role of oral dysbiosis in CD is poorly understood. We aimed to explore microbiome signature and dysbiosis of the salivary microbiome in CD patients, and correlate microbiota changes to the level of inflammation. Saliva samples were collected from healthy controls (HC) and CD patients (n = 40 per group). Salivary microbiome was analyzed by sequencing the entire 16S rRNA gene. Inflammatory biomarkers (C-reactive protein and calprotectin) were measured and correlated with microbiome diversity. Five dominant species were significantly enriched in CD, namely Veillonella dispar, Megasphaera stantonii, Prevotella jejuni, Dolosigranulum pigrum and Lactobacillus backii. Oral health had a significant impact on the microbiome since various significant features were cariogenic as Streptococcus mutans or periopathogenic such as Fusobacterium periodonticum. Furthermore, disease activity, duration and frequency of relapses impacted the oral microbiota. Treatment with monoclonal antibodies led to the emergence of a unique species called Simonsiella muelleri. Combining immunomodulatory agents with monoclonal antibodies significantly increased multiple pathogenic species such as Salmonella enterica, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Loss of diversity in CD was shown by multiple diversity indices. There was a significant negative correlation between gut inflammatory biomarkers (particularly calprotectin) and α-diversity, suggesting more inflammation associated with diversity loss in CD. Salivary dysbiosis was evident in CD patients, with unique microbiota signatures and perturbed species that can serve as disease biomarkers or potential targets for microbiota modulation. The interplay of various factors collectively contributed to dysbiosis, although each factor probably had a unique effect on the microbiome. The emergence of pathogenic bacteria in the oral cavity of CD patients is alarming since they can disturb gut homeostasis and induce inflammation by swallowing, or hematogenous spread of microbiota, their metabolites, or generated inflammatory mediators.
Collapse
Affiliation(s)
- Hala Elzayat
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, UAE
| | - Talha Malik
- Department of Medicine, Sheikh Shakhbout Medical City, Abu Dhabi, UAE
| | - Haifa Al-Awadhi
- Department of Pediatric Gastroenterology, Tawam Hospital, Al Ain, UAE
| | - Mazen Taha
- Department of Internal Medicine, Tawam Hospital, Al Ain, UAE
| | - Gehad Elghazali
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, UAE
- Department of Immunology, Sheikh Khalifa Medical City, Union71-Purehealth, Abu Dhabi, UAE
| | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, UAE.
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, UAE.
| |
Collapse
|
4
|
Flahaut M, Leprohon P, Pham NP, Gingras H, Bourbeau J, Papadopoulou B, Maltais F, Ouellette M. Distinctive features of the oropharyngeal microbiome in Inuit of Nunavik and correlations of mild to moderate bronchial obstruction with dysbiosis. Sci Rep 2023; 13:16622. [PMID: 37789055 PMCID: PMC10547696 DOI: 10.1038/s41598-023-43821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
Inuit of Nunavik are coping with living conditions that can influence respiratory health. Our objective was to investigate associations between respiratory health in Inuit communities and their airway microbiome. Oropharyngeal samples were collected during the Qanuilirpitaa? 2017 Inuit Health Survey and subjected to metagenomic analyses. Participants were assigned to a bronchial obstruction group or a control group based on their clinical history and their pulmonary function, as monitored by spirometry. The Inuit microbiota composition was found to be distinct from other studied populations. Within the Inuit microbiota, differences in diversity measures tend to distinguish the two groups. Bacterial taxa found to be more abundant in the control group included candidate probiotic strains, while those enriched in the bronchial obstruction group included opportunistic pathogens. Crossing taxa affiliation method and machine learning consolidated our finding of distinct core microbiomes between the two groups. More microbial metabolic pathways were enriched in the control participants and these were often involved in vitamin and anti-inflammatory metabolism, while a link could be established between the enriched pathways in the disease group and inflammation. Overall, our results suggest a link between microbial abundance, interactions and metabolic activities and respiratory health in the Inuit population.
Collapse
Affiliation(s)
- Mathilde Flahaut
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Nguyen Phuong Pham
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Hélène Gingras
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Jean Bourbeau
- Department of Medicine, Division of Respiratory Medicine, McGill University Health Center, Montréal, QC, Canada
| | - Barbara Papadopoulou
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - François Maltais
- Groupe de Recherche en Santé Respiratoire, Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
5
|
Lee IH, Yang HG, Ha SS, Son GM, Kim DW, Kim DK. Effect of Chronic Rhinosinusitis on the Risk of Development of Rheumatoid Arthritis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:647-658. [PMID: 37827981 PMCID: PMC10570781 DOI: 10.4168/aair.2023.15.5.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Several studies have reported a possible link between chronic rhinosinusitis (CRS) and rheumatoid arthritis (RA). However, it remains unclear whether CRS could influence the risk of developing RA. Therefore, in this study, we focused on examining the association between CRS and RA. METHODS A total of 14,867 individuals with CRS and 14,867 without CRS were enrolled after 1:1 propensity score match from a nationwide longitudinal cohort database in South Korea. RA incidence was assessed using person-years at risk, and the hazard ratio (HR) was examined using the Cox proportional hazards model. RESULTS The incidence of RA (per 1,000 person-years) was 6.51 for those with CRS, 6.55 for those with CRS without nasal polyps (CRSsNP), and 5.96 for those with CRS with nasal polyps (CRSwNP). We found that CRS individuals had a significantly increased risk of subsequent RA development with an adjusted HR of 1.41, regardless of the phenotype (adjusted HR was 1.42 in CRSsNP and 1.37 in CRSwNP patients). Moreover, the risk of developing RA over time was relatively higher within the first 4 years after the diagnosis of CRS. CONCLUSIONS Our nationwide population-based cohort study suggests that CRS may be associated with a subsequent increase in RA events, regardless of the phenotype. Therefore, physicians should consider RA risk when diagnosing and treating CRS patients.
Collapse
Affiliation(s)
- Il Hwan Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Hee Gyu Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Seung-Su Ha
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Gil Myeong Son
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
- Institute of New Frontier Research, Division of Big Data and Artificial Intelligence, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea.
| |
Collapse
|
6
|
Zhu Z, Lan J, Wei R, Xu Y, Hong Y, Bao W, He G. Microbiome and Th cytokines association in chronic rhinosinusitis with or without nasal polyp. Laryngoscope Investig Otolaryngol 2023; 8:335-345. [PMID: 37090867 PMCID: PMC10116975 DOI: 10.1002/lio2.1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/20/2022] [Accepted: 02/12/2023] [Indexed: 03/11/2023] Open
Abstract
Objective Chronic rhinosinusitis (CRS), a common disease in otorhinolaryngology, seriously affects the life quality of patients. The existing therapy has certain limitations, and it is very urgent to deeply explore the pathogenesis and classification of CRS. Microbiome and inflammation are considered the causes of CRS, but the precise roles and the associations between these two factors in the pathogenesis of CRS remain controversial. Methods Secretions were collected from the middle nasal canal, maxillary sinus and ethmoid sinus in CRS patients, then subjected to 16 S rRNA gene sequencing to profile microbiota community. Operational Taxonomic Units clustering and species annotation were adopted to obtain species diversity, prevalence rate and average relative abundance. Comparisons were performed at the level of microbial species and genus between CRS and control using NMDS, Anosim and MetaStat analysis. Th1 cytokines and Th2 cytokines were detected by ELISA. Spearman analysis were adopted to probe into the correlation between Th cytokines and microbial species in CRS. Results Thirty-seven patients were enrolled, among them 22 with CRS and 15 were controls. The most abundant genera were Corynebacterium and Staphylococcus no matter in CRS patients or control. Corynebacterium propinquum was significant decreased in CRS patients no matter with nasal polyp or not. The abundances of Prevotella birria and Carnobacterium maltaromaticum were significantly different between CRSsNP and CRSwNP group. The levels of cytokines IL-2, TNF-α, IFN-ɣ, IL-4, IL-6, IL-10 were all increased in CRS patients. The cytokines levels were associated with specific microbial species in nasal tissue. Conclusion The changes of species richness and complexity in nasal microbiome were obvious in CRS patients with nasal polyps or not. The different cytokines levels and microbiome between CRS patients without nasal polyps and patients with nasal polyps suggest heterogeneity in pathogenesis of chronic rhinosinusitis. Distinct microbiota and different cytokines were strongly linked in CRS. Level of Evidence NA.
Collapse
Affiliation(s)
- ZhongShou Zhu
- The Third Clinical Medical CollegeFujian Medical UniversityFuzhouChina
| | - Jiao Lan
- Department of OtolaryngologyNingde Municipal Hospital Affliated of Ningde Normal University (Ningde Institute of Otolaryngology)NingdeFujianChina
| | - Rifu Wei
- Department of OtolaryngologyNingde Municipal Hospital Affliated of Ningde Normal University (Ningde Institute of Otolaryngology)NingdeFujianChina
| | - Yangbin Xu
- Department of OtolaryngologyNingde Municipal Hospital Affliated of Ningde Normal University (Ningde Institute of Otolaryngology)NingdeFujianChina
| | - Yiyun Hong
- Department of OtolaryngologyNingde Municipal Hospital Affliated of Ningde Normal University (Ningde Institute of Otolaryngology)NingdeFujianChina
| | - Weijing Bao
- Department of OtolaryngologyNingde Municipal Hospital Affliated of Ningde Normal University (Ningde Institute of Otolaryngology)NingdeFujianChina
| | - Guanwen He
- Department of OtolaryngologyNingde Municipal Hospital Affliated of Ningde Normal University (Ningde Institute of Otolaryngology)NingdeFujianChina
| |
Collapse
|
7
|
Lim SJ, Jithpratuck W, Wasylik K, Sriaroon P, Dishaw LJ. Associations of Microbial Diversity with Age and Other Clinical Variables among Pediatric Chronic Rhinosinusitis (CRS) Patients. Microorganisms 2023; 11:microorganisms11020422. [PMID: 36838387 PMCID: PMC9965780 DOI: 10.3390/microorganisms11020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a heterogenous disease that causes persistent paranasal sinus inflammation in children. Microorganisms are thought to contribute to the etiology and progression of CRS. Culture-independent microbiome analysis offers deeper insights into sinonasal microbial diversity and microbe-disease associations than culture-based methods. To date, CRS-related microbiome studies have mostly focused on the adult population, and only one study has characterized the pediatric CRS microbiome. In this study, we analyzed the bacterial diversity of adenoid tissue, adenoid swab, maxillary sinus, and sinus wash samples from 45 pediatric CRS patients recruited from the Johns Hopkins All Children's Hospital (JHACH) in St. Petersburg, FL, USA. The alpha diversity in these samples was associated with baseline nasal steroid use, leukotriene receptor antagonist (LTRA) use, and total serum immunoglobulin (Ig) E (IgE) level. Streptococcus, Moraxella, and Haemophilus spp. were most frequently identified from sinus cultures and the sequenced 16S rRNA gene content. Comparative analyses combining our samples with the samples from the previous microbiome study revealed differentially abundant genera between patients with pediatric CRS and healthy controls, including Cutibacterium and Moraxella. Additionally, the abundances of Streptobacillus and Staphylococcus were consistently correlated with age in both adenoid- and sinus-derived samples. Our study uncovers new associations of alpha diversity with clinical parameters, as well as associations of specific genera with disease status and age, that can be further investigated.
Collapse
Affiliation(s)
- Shen Jean Lim
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Warit Jithpratuck
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Kathleen Wasylik
- Pediatric Ear, Nose & Throat Specialists, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Panida Sriaroon
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
- USF Pediatric Allergy/Immunology Clinic, Food Allergy Clinic, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Larry J. Dishaw
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
- Correspondence: ; Tel.: +1-727-553-3601
| |
Collapse
|
8
|
Characterization of Bacterial Differences Induced by Cleft-Palate-Related Spatial Heterogeneity. Pathogens 2022; 11:pathogens11070771. [PMID: 35890015 PMCID: PMC9323727 DOI: 10.3390/pathogens11070771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Cleft palate (CP) patients have a higher prevalence of oral and respiratory tract bacterial infections than the general population. Nevertheless, characteristics of bacterial differences induced by CP-related anatomical heterogeneity are unknown. Methods: In this study, we systematically described the characteristics of bacteria in the oral and nasal niches in healthy children, CP children, healthy adolescents, CP adolescents, and postoperative adolescents by 454-pyrosequencing technology (V3−V6) to determine bacterial differences induced by CP. Results: Due to the CP-induced variations in spatial structure, the early establishment of microecology in CP children was different from that in healthy children. Nasal bacterial composition showed greater changes than in the saliva. Moreover, such discrepancy also appeared in CP and postoperative adolescents who had even undergone surgery > 10 years previously. Interestingly, we found by Lefse analysis that part of bacterial biomarkers in the nasal cavity of CP subjects was common oral flora, suggesting bacterial translocation between the oral and nasal niches. Therefore, we defined the oral−nasal translocation bacteria as O-N bac. By comparing multiple groups, we took the intersection sets of O-N bacs selected from CP children, CP adolescents, and postoperative adolescents as TS O-N bacs with time−character, including Streptococcus, Gemella, Alloprevotella, Neisseria, Rothia, Actinomyces, and Veillonella. These bacteria were at the core of the nasal bacterial network in CP subjects, and some were related to infectious diseases. Conclusions: CP would lead to significant and long-term differences in oral and nasal flora. TS O-N bacs migrating from the oral to the nasal might be the key stone causing nasal flora dysbiosis in the CP patients.
Collapse
|
9
|
Bourdillon AT, Edwards HA. Review of probiotic use in otolaryngology. Am J Otolaryngol 2021; 42:102883. [PMID: 33453564 DOI: 10.1016/j.amjoto.2020.102883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/25/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Probiotics have garnered considerable attention as an intervention for various conditions common to otolaryngology. The purpose of this review is to evaluate the current literature to offer recommendations about the safety and efficacy of probiotic management in otolaryngologic conditions. STUDY DESIGN Narrative review. METHODS PubMed and Google Scholar were queried using pertinent keywords to retrieve relevant studies with particular focus in the recent 5 years. All abstracts were assessed and studies, reviews and meta-analyses achieving evaluation of probiotic therapies or characterization of microbiome changes were included for further review. Studies were categorized by condition or anatomic region across various subspecialties. Key data parameters were extracted and evaluated across studies and treatment types. RESULTS Strong evidence exists for the use probiotic agents to improve symptoms for allergic rhinitis, chronic rhinosinusitis and certain dental conditions. Despite promising results, further investigation is needed to evaluate and optimize probiotic delivery for mitigating otitis media, oropharyngeal inflammation and upper respiratory tract infections. Preclinical studies suggest that probiotics may potentially offer benefit for voice prosthesis maintenance, wound healing and mitigation of oral dysplasia. CONCLUSION Probiotic therapies may offer clinical benefit in a variety of contexts within the field of otolaryngology, especially for short-term relief of certain inflammatory conditions of the oral cavity, auditory and nasal cavities. Further investigation is warranted for evaluation of long-term outcomes and pathogenic deterrence.
Collapse
Affiliation(s)
- Alexandra T Bourdillon
- Division of Otolaryngology, Department of Surgery, Yale University School of Medicine, New Haven, CT, United States of America.
| | - Heather A Edwards
- Department of Otolaryngology, Boston University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
10
|
Yang W, Chen CH, Jia M, Xing X, Gao L, Tsai HT, Zhang Z, Liu Z, Zeng B, Yeung SCJ, Lee MH, Cheng C. Tumor-Associated Microbiota in Esophageal Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:641270. [PMID: 33681225 PMCID: PMC7930383 DOI: 10.3389/fcell.2021.641270] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
Important evidence indicates the microbiota plays a key role in esophageal squamous cell carcinoma (ESCC). The esophageal microbiota was prospectively investigated in 18 patients with ESCC and 11 patients with physiological normal (PN) esophagus by 16S rRNA gene profiling, using next-generation sequencing. The microbiota composition in tumor tissues of ESCC patients were significantly different from that of patients with PN tissues. The ESCC microbiota was characterized by reduced microbial diversity, by decreased abundance of Bacteroidetes, Fusobacteria, and Spirochaetes. Employing these taxa into a microbial dysbiosis index demonstrated that dysbiosis microbiota had good capacity to discriminate between ESCC and PN esophagus. Functional analysis characterized that ESCC microbiota had altered nitrate reductase and nitrite reductase functions compared with PN group. These results suggest that specific microbes and the microbiota may drive or mitigate ESCC carcinogenesis, and this study will facilitate assigning causal roles in ESCC development to certain microbes and microbiota.
Collapse
Affiliation(s)
- Weixiong Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chang-Han Chen
- Department of Applied Chemistry, and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou County, Taiwan
| | - Minghan Jia
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiangbin Xing
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Hsin-Ting Tsai
- Department of Applied Chemistry, and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou County, Taiwan
| | - Zhanfei Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenguo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mong-Hong Lee
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chao Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Chronic Rhinosinusitis: MALDI-TOF Mass Spectrometry Microbiological Diagnosis and Electron Microscopy Analysis; Experience of the 2nd Otorhinolaryngology Clinic of Cluj-Napoca, Romania. J Clin Med 2020; 9:jcm9123973. [PMID: 33302509 PMCID: PMC7763976 DOI: 10.3390/jcm9123973] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Chronic rhinosinusitis (CRS) represents a wide range of infectious-inflammatory processes affecting, simultaneously, the nose and paranasal sinuses mucosa. The paper presents outcomes of the investigation of CRS microbiological characteristics in a group of 32 patients. (2) Methods: The purulent samples were collected during functional endoscopic sinus surgery. Agar plates were incubated and examined. All types of colonies were identified using Matrix-Assisted Laser Desorption - Ionisation-Time of Flight Mass Spectrometry (MALDI-TOF MS). For scanning electron microscopy, samples were fixed and sputter-coated with 10 nm gold and analyzed using a scanning electron microscope. For transmission electron microscopy, samples were fixed, postfixed, and dehydrated. After polymerization, ultrathin sections were collected on carbon coated copper grids and analyzed with Jeol JEM1010 TEM. (3) Results: Positive microbiological diagnosis was obtained in 62.5% of cases. The most frequent species found are Staphylococcus aureus and Streptococcus constellatus subsp. pharyngis. Corynebacterium aurimucosum and Eggerthia catenaformis were unreported species in CRS until the present. Biofilm was evidenced in 43.7% of sinus mucosa samples. Ciliary disorientation, atrophy, and no ciliated cells were also identified. (4) Conclusion: The microbial factor—pathogen or opportunistic—is one of the most important pathological links in chronic rhinosinusitis. MALDI-TOF MS allows easily and quickly identification of germs.
Collapse
|
12
|
Akkermansia muciniphila is Negatively Correlated with Hemoglobin A1c in Refractory Diabetes. Microorganisms 2020; 8:microorganisms8091360. [PMID: 32899513 PMCID: PMC7565276 DOI: 10.3390/microorganisms8091360] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
Patients with refractory diabetes are defined as type 2 diabetes (T2D) patients; they cannot achieve optimal glycemic control and exhibit persistent elevations of hemoglobin A1c (HbA1c) ≥8% while on appropriate therapy. Hyperglycemia can lead to severe microvascular/macrovascular complications. However, in contrast to T2D, few studies have focused specifically on the gut microbiota in refractory diabetes. To examine this issue, we recruited 79 subjects with T2D and refractory diabetes (RT2D), and all subjects received standard therapy with Metformin or other hypoglycemic agents with or without insulin for at least one year. The α-diversity displayed no significant difference, whereas the β-diversity showed a marginal significance (p = 0.054) between T2D and RT2D. The evaluation of taxonomic indices revealed reductions in both Akkermansia muciniphila and Fusobacterium and a corresponding enrichment of Bacteroides vulgatus, Veillonella denticariosi among those with RT2D. These microbial markers distinguished RT2D from T2D with an acceptable degree of discrimination (area under the curve (AUC) = 0.719, p < 0.01) and were involved in several glucose-related functional pathways. Furthermore, the relative abundance of Akkermansia muciniphila was negatively correlated with HbA1c. Our combined results reveal unique features of the gut microbiota in RT2D and suggest that the evaluation of the gut microbiota could provide insights into the mechanisms underlying glycemic control and the impact of therapeutic modalities in patients with RT2D.
Collapse
|