1
|
Vlad MA, Lixandru BE, Muntean AA, Trandafir I, Luncă C, Tuchiluş C. The First Report of mcr-1-Carrying Escherichia coli, Isolated from a Clinical Sample in the North-East of Romania. Microorganisms 2024; 12:2461. [PMID: 39770664 PMCID: PMC11679583 DOI: 10.3390/microorganisms12122461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Colistin resistance poses a significant clinical challenge, particularly in Gram-negative bacteria. This study investigates the occurrence of plasmid-mediated colistin resistance among Enterobacterales isolates (Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp.) and non-fermentative rods (Acinetobacter baumannii and Pseudomonas aeruginosa). We analyzed 114 colistin-resistant isolates that were selected, based on resistance phenotypes, and isolated between 2019 and 2023. To achieve this, we used the rapid immunochromatographic test, NG-Test® MCR-1; multiplex PCR for mcr-1 to mcr-8, and real-time PCR for mcr-1 and mcr-2. One E. coli isolate was identified as carrying the mcr-1 gene, confirmed by NG-Test® MCR-1, multiplex PCR and whole-genome sequencing. This strain, belonging to ST69, harbored four plasmids, harboring different antimicrobial resistance genes, with mcr-1 being located on a 33,304 bp circular IncX4 plasmid. No mcr-2 to mcr-8-positive isolates were detected, prompting further investigation into alternative colistin resistance mechanisms. This is the first report of a mcr-1-positive, colistin-resistant E. coli isolated from a human clinical sample in the North-East of Romania.
Collapse
Affiliation(s)
- Mădălina-Alexandra Vlad
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania; (M.-A.V.); (C.L.); (C.T.)
- Medical Analysis Laboratory, “St. Spiridon” County Clinical Emergency Hospital Iași, 700111 Iași, Romania
| | - Brîndușa-Elena Lixandru
- Cantacuzino National Medical-Military Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania;
| | - Andrei-Alexandru Muntean
- Cantacuzino National Medical-Military Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania;
- Department of Microbiology II, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Bld. Eroilor Sanitari, 050474 Bucharest, Romania
| | - Irina Trandafir
- Regional Institute of Oncology (IRO), 2-4 G-ral Berthelot Street, 700483 Iași, Romania;
| | - Cătălina Luncă
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania; (M.-A.V.); (C.L.); (C.T.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iași, Romania
| | - Cristina Tuchiluş
- Department of Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iași, Romania; (M.-A.V.); (C.L.); (C.T.)
- Medical Analysis Laboratory, “St. Spiridon” County Clinical Emergency Hospital Iași, 700111 Iași, Romania
| |
Collapse
|
2
|
Wang L, Guan Y, Lin X, Wei J, Zhang Q, Zhang L, Tan J, Jiang J, Ling C, Cai L, Li X, Liang X, Wei W, Li RM. Whole-Genome Sequencing of an Escherichia coli ST69 Strain Harboring blaCTX-M-27 on a Hybrid Plasmid. Infect Drug Resist 2024; 17:365-375. [PMID: 38318209 PMCID: PMC10840416 DOI: 10.2147/idr.s427571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024] Open
Abstract
Objective Escherichia coli is a common Gram-negative human pathogen. The emergence of E. coli with multiple-antibiotic-resistant phenotypes has become a serious health concern. This study reports the whole-genome sequences of third-generation cephalosporin-resistant (3GC-R) and multidrug-resistant (MDR) E. coli EC6868 and explores the acquired antibiotic-resistance genes (ARGs) as well as their genetic contexts. Methods E. coli EC6868 was isolated from a vaginal secretion sample of a pregnant patient in China. The antimicrobial susceptibility was assessed, and whole-genome sequencing was conducted. The acquired ARGs, insertion sequence (IS) elements, and integrons within the genome of E. coli EC6868 were identified, and the genetic contexts associated with the ARGs were analyzed systematically. Results E. coli EC6868 was determined to belong to ST69 and harbored a 144.9-kb IncF plasmid (pEC6868-1) with three replicons (Col156, IncFIBAP001918, and IncFII). The ESBL gene blaCTX-M-27 was located on the structure "∆ISEcp1-blaCTX-M-27-IS903B", which was widely present in the species of Enterobacteriales. Other ARGs carried by plasmid pEC6868-1 were mainly located on the 18.9-kb IS26-composite transposon (five copies of intact IS26 and one copy of truncated IS26) composing of IS26-mphA-mrx(A)-mphR(A)-IS6100, ∆TnAs3-eamA-tet(A)-tetR(A)-aph(6)-Id-aph(3")-Ib-sul2-IS26, and a class 1 integron, which was widely present on IncF plasmids of E. coli, mainly distributed in ST131, ST38, and ST405. Notably, pEC6868 in our study was the first report on a plasmid harboring the 18.9-kb structure in E. coli ST69 in China. Conclusion The 3GC-R E. coli ST69 strain with an MDR IncF plasmid carrying blaCTX-M-27 and other ARGs, conferring resistance to aminoglycosides, macrolides, sulfonamides, tetracycline, and trimethoprim, was identified in a hospital in China. Mobile genetic elements including ISEcp1, IS903B, IS26, Tn3, IS6100 and class 1 integron were found within the MDR region, which could play important roles in the global dissemination of these resistance genes.
Collapse
Affiliation(s)
- Ling Wang
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Yuee Guan
- Department of Cardiology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Xu Lin
- Department of Gastrointestinal Surgery, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Jie Wei
- Department of Clinical Laboratory, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Qinghuan Zhang
- Department of Clinical Laboratory, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Limei Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Jing Tan
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Jie Jiang
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Caiqin Ling
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Lei Cai
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Xiaobin Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Xiong Liang
- Department of Obstetrics, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Wei Wei
- Department of Cardiothoracic Surgery, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People’s Hospital), Zhuhai, 519000, People’s Republic of China
| | - Rui-Man Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People’s Republic of China
| |
Collapse
|
3
|
Algarni S, Han J, Gudeta DD, Khajanchi BK, Ricke SC, Kwon YM, Rhoads DD, Foley SL. In silico analyses of diversity and dissemination of antimicrobial resistance genes and mobile genetics elements, for plasmids of enteric pathogens. Front Microbiol 2023; 13:1095128. [PMID: 36777021 PMCID: PMC9908598 DOI: 10.3389/fmicb.2022.1095128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction The antimicrobial resistance (AMR) mobilome plays a key role in the dissemination of resistance genes encoded by mobile genetics elements (MGEs) including plasmids, transposons (Tns), and insertion sequences (ISs). These MGEs contribute to the dissemination of multidrug resistance (MDR) in enteric bacterial pathogens which have been considered as a global public health risk. Methods To further understand the diversity and distribution of AMR genes and MGEs across different plasmid types, we utilized multiple sequence-based computational approaches to evaluate AMR-associated plasmid genetics. A collection of 1,309 complete plasmid sequences from Gammaproteobacterial species, including 100 plasmids from each of the following 14 incompatibility (Inc) types: A/C, BO, FIA, FIB, FIC, FIIA, HI1, HI2, I1, K, M, N, P except W, where only 9 sequences were available, was extracted from the National Center for Biotechnology Information (NCBI) GenBank database using BLAST tools. The extracted FASTA files were analyzed using the AMRFinderPlus web-based tools to detect antimicrobial, disinfectant, biocide, and heavy metal resistance genes and ISFinder to identify IS/Tn MGEs within the plasmid sequences. Results and Discussion In silico prediction based on plasmid replicon types showed that the resistance genes were diverse among plasmids, yet multiple genes were widely distributed across the plasmids from enteric bacterial species. These findings provide insights into the diversity of resistance genes and that MGEs mediate potential transmission of these genes across multiple plasmid replicon types. This notion was supported by the observation that many IS/Tn MGEs and resistance genes known to be associated with them were common across multiple different plasmid types. Our results provide critical insights about how the diverse population of resistance genes that are carried by the different plasmid types can allow for the dissemination of AMR across enteric bacteria. The results also highlight the value of computational-based approaches and in silico analyses for the assessment of AMR and MGEs, which are important elements of molecular epidemiology and public health outcomes.
Collapse
Affiliation(s)
- Suad Algarni
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Jing Han
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| | - Dereje D. Gudeta
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| | - Bijay K. Khajanchi
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| | - Steven C. Ricke
- Meat Science & Animal Biologics Discovery Program and Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Douglas D. Rhoads
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Steven L. Foley
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
4
|
Recent Insights into Escherichia coli and Vibrio spp. Pathogenicity and Responses to Stress. Microorganisms 2021; 10:microorganisms10010038. [PMID: 35056488 PMCID: PMC8779644 DOI: 10.3390/microorganisms10010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
The ubiquitous presence of microorganisms is largely attributed to their tremendous capacity to successfully adapt and survive in highly adverse environments [...].
Collapse
|
5
|
Genomic Characterization of VIM and MCR Co-Producers: The First Two Clinical Cases, in Italy. Diagnostics (Basel) 2021; 11:diagnostics11010079. [PMID: 33418979 PMCID: PMC7825325 DOI: 10.3390/diagnostics11010079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Background: the co-production of carbapenemases and mcr-genes represents a worrisome event in the treatment of Enterobacteriaceae infections. The aim of the study was to characterize the genomic features of two clinical Enterobacter cloacae complex (ECC) isolates, co-producing VIM and MCR enzymes, in Italy. Methods: species identification and antibiotic susceptibility profiling were performed using MALDI-TOF and broth microdilution methods, respectively. Transferability of the blaVIM- and mcr- type genes was verified through conjugation experiment. Extracted DNA was sequenced using long reads sequencing technology on the Sequel I platform (PacBio). Results: the first isolate showed clinical resistance against ertapenem yet was colistin susceptible (EUCAST 2020 breakpoints). The mcr-9.2 gene was harbored on a conjugative IncHI2 plasmid, while the blaVIM-1 determinant was harbored on a conjugative IncN plasmid. The second isolate, resistant to both carbapenems and colistin, harbored: mcr-9 gene and its two component regulatory genes for increased expression on the chromosome, mcr-4.3 on non-conjugative (yet co-transferable) ColE plasmid, and blaVIM-1 on a non-conjugative IncA plasmid. Conclusions: to our knowledge, this is the first report of co-production of VIM and MCR in ECC isolates in Italy.
Collapse
|