1
|
Chen Y, Yan B, Chen W, Zhang X, Liu Z, Zhang Q, Li L, Hu M, Zhao X, Xu X, Lv Q, Luo Y, Cai Y, Liu Y. Development of the CRISPR-Cas12a system for editing of Pseudomonas aeruginosa phages. iScience 2024; 27:110210. [PMID: 39055914 PMCID: PMC11269290 DOI: 10.1016/j.isci.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/26/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas aeruginosa is a common opportunistic pathogen. The potential efficacy of phage therapy has attracted the attention of researchers, but efficient gene-editing tools are lacking, limiting the study of their biological properties. Here, we designed a type V CRISPR-Cas12a system for the gene editing of P. aeruginosa phages. We first evaluated the active cutting function of the CRISPR-Cas12a system in vitro and discovered that it had a higher gene-cutting efficiency than the type II CRISPR-Cas9 system in three different P. aeruginosa phages. We also demonstrated the system's ability to precisely edit genes in Escherichia coli phages, Salmonella phages, and P. aeruginosa phages. Using the aforementioned strategies, non-essential P. aeruginosa phage genes can be efficiently deleted, resulting in a reduction of up to 5,215 bp (7.05%). Our study has provided a rapid, efficient, and time-saving tool that accelerates progress in phage engineering.
Collapse
Affiliation(s)
- Yibao Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
- Shandong Vamph Animal Health Products Co., LTD, Jinan, China
| | - Bingjie Yan
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Weizhong Chen
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xue Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Zhengjie Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Qing Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Lulu Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Ming Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
- Shandong Vamph Animal Health Products Co., LTD, Jinan, China
| | - Xiaonan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Xiaohui Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Qianghua Lv
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Yanbo Luo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
| | - Yumei Cai
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- China-UK Joint Laboratory of Bacteriophage Engineering, Jinan, China
- Shandong Vamph Animal Health Products Co., LTD, Jinan, China
| |
Collapse
|
2
|
Uskudar-Guclu A, Yalcin S. A novel Enterococcus faecalis bacteriophage Ef212: biological and genomic features. Int Microbiol 2024:10.1007/s10123-024-00547-1. [PMID: 38935199 DOI: 10.1007/s10123-024-00547-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
This study aimed to isolate and characterize biological and genomic features of a phage infecting Enterococcus faecalis. The phage was isolated from environmental water and temperature and pH stability, one-step growth curve, and multiplicity of infection (MOI) were determined. Whole genome sequencing (WGS) and structural and functional annotations were performed. Its antibiofilm activity was also evaluated. The optimal MOI was 0.01, the latency period was 5 min, and the burst size was 202 plaque forming unit (PFU). High phage survival rates were observed at between pH 4-10 and temperatures between 4-50 °C. WGS and Transmission electron microscopy (TEM) showed that it was an Efquatrovirus representing siphovirus morphotype respectively. It was named as Enterococcus phage Ef212 and has a linear 40,690 bp double-stranded DNA with 45.3% G + C content (GenBank accession number: OR052631). BACPHLIP tool demonstrated that Enterococcus phage Ef212 is a lytic phage (88%). A total of 80 open reading frames (ORFs) were found and there were no antibiotic resistance genes, pathogenicity, virulence genes, or tRNAs in the phage genome. It was diverged from the most similar phages (identity, 88.35%; coverage, 89%) by phylogenetic analysis. Phage Ef212 shared a large part of its genome (60/80) with several other phages, yet some unique parts were found in their genomes. Host range analysis showed that phage Ef212 showed lytic activity against vancomycin-resistant and vancomycin-susceptible E. faecalis clinical isolates. This novel phage Ef212 showed the ability to inhibit and reduce the biofilm formation by around 42% and 38%, respectively. The biological and genomic features indicate that having an effective antibacterial activity, phage Ef212 seemed a promising therapeutic and biocontrol agent.
Collapse
Affiliation(s)
- Aylin Uskudar-Guclu
- Faculty of Medicine, Department of Medical Microbiology, Baskent University, Ankara, Türkiye.
| | - Suleyman Yalcin
- Microbiology References Laboratory, Ministry of Health General Directorate of Public Health, Ankara, Türkiye
| |
Collapse
|
3
|
Wang T, Zhang L, Zhang Y, Tong P, Ma W, Wang Y, Liu Y, Su Z. Isolation and identification of specific Enterococcus faecalis phage C-3 and G21-7 against Avian pathogenic Escherichia coli and its application to one-day-old geese. Front Microbiol 2024; 15:1385860. [PMID: 38962142 PMCID: PMC11221357 DOI: 10.3389/fmicb.2024.1385860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/24/2024] [Indexed: 07/05/2024] Open
Abstract
Colibacillosis caused by Avian pathogenic Escherichia coli (APEC), including peritonitis, respiratory tract inflammation and ovaritis, is recognized as one of the most common and economically destructive bacterial diseases in poultry worldwide. In this study, the characteristics and inhibitory potential of phages were investigated by double-layer plate method, transmission electron microscopy, whole genome sequencing, bioinformatics analysis and animal experiments. The results showed that phages C-3 and G21-7 isolated from sewage around goose farms infected multiple O serogroups (O1, O2, O18, O78, O157, O26, O145, O178, O103 and O104) Escherichia coli (E.coli) with a multiplicity of infection (MOI) of 10 and 1, respectively. According to the one-step growth curve, the incubation time of both bacteriophage C-3 and G21-7 was 10 min. Sensitivity tests confirmed that C-3 and G21-6 are stable at 4 to 50 °C and pH in the range of 4 to 11. Based on morphological and phylogenetic analysis, phages C-3 and G21-7 belong to Enterococcus faecalis (E. faecalis) phage species of the genus Saphexavirus of Herelleviridae family. According to genomic analysis, phage C-3 and G21-7 were 58,097 bp and 57,339 bp in size, respectively, with G+C content of 39.91% and 39.99%, encoding proteins of 97 CDS (105 to 3,993 bp) and 96 CDS (105 to 3,993 bp), and both contained 2 tRNAs. Both phages contained two tail proteins and holin-endolysin system coding genes, and neither carried resistance genes nor virulence factors. Phage mixture has a good safety profile and has shown good survival probability and feed efficiency in both treatment and prophylaxis experiments with one-day-old goslings. These results suggest that phage C-3 and G21-7 can be used as potential antimicrobials for the prevention and treatment of APEC.
Collapse
Affiliation(s)
- Tianli Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Ling Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Yi Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Panpan Tong
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Yan Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Yifan Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| | - Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
- Xinjiang Key Laboratory of Herbivore Drug Research and Creation, College of Veterinary Medicine, Xinjiang Agricultural University, Xinjiang, China
| |
Collapse
|
4
|
Abed S, Sholeh M, Khazani Asforooshani M, Shafiei M, Hashemi Shahraki A, Nasr S. Insights into the novel Enterococcus faecalis phage: A comprehensive genome analysis. PLoS One 2024; 19:e0301292. [PMID: 38743671 PMCID: PMC11093359 DOI: 10.1371/journal.pone.0301292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Enterococcus faecalis, a Gram-positive bacterium, poses a significant clinical challenge owing to its intrinsic resistance to a broad spectrum of antibiotics, warranting urgent exploration of innovative therapeutic strategies. This study investigated the viability of phage therapy as an alternative intervention for antibiotic-resistant E. faecalis, with a specific emphasis on the comprehensive genomic analysis of bacteriophage SAM-E.f 12. The investigation involved whole-genome sequencing of SAM-E.f 12 using Illumina technology, resulting in a robust dataset for detailed genomic characterization. Bioinformatics analyses were employed to predict genes and assign functional annotations. The bacteriophage SAM-E.f 12, which belongs to the Siphoviridae family, exhibited substantial potential, with a burst size of 5.7 PFU/infected cells and a latent period of 20 min. Host range determination experiments demonstrated its effectiveness against clinical E. faecalis strains, positioning SAM-E.f 12 as a precise therapeutic agent. Stability assays underscore resilience across diverse environmental conditions. This study provides a comprehensive understanding of SAM-E.f 12 genomic composition, lytic lifecycle parameters, and practical applications, particularly its efficacy in murine wound models. These results emphasize the promising role of phage therapy, specifically its targeted approach against antibiotic-resistant E. faecalis strains. The nuanced insights derived from this research will contribute to the ongoing pursuit of efficacious phage therapies and offer valuable implications for addressing the clinical challenges associated with E. faecalis infections.
Collapse
Affiliation(s)
- Sahar Abed
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Abdolrazagh Hashemi Shahraki
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Jacksonville, University of Florida, Gainesville, Florida, United States of America
| | - Shaghayegh Nasr
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Microorganisms Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| |
Collapse
|
5
|
Kalia VC, Patel SKS, Lee JK. Bacterial biofilm inhibitors: An overview. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115389. [PMID: 37634478 DOI: 10.1016/j.ecoenv.2023.115389] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/05/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
Bacteria that cause infectious diseases adopt biofilms as one of their most prevalent lifestyles. Biofilms enable bacteria to tolerate environmental stress and evade antibacterial agents. This bacterial defense mechanism has rendered the use of antibiotics ineffective for the treatment of infectious diseases. However, many highly drug-resistant microbes have rapidly emerged owing to such treatments. Different signaling mechanisms regulate bacterial biofilm formation, including cyclic dinucleotide (c-di-GMP), small non-coding RNAs, and quorum sensing (QS). A cell density-dependent phenomenon, QS is associated with c-di-GMP (a global messenger), which regulates gene expression related to adhesion, extracellular matrix production, the transition from the planktonic to biofilm stage, stability, pathogenicity, virulence, and acquisition of nutrients. The article aims to provide information on inhibiting biofilm formation and disintegrating mature/preformed biofilms. This treatment enables antimicrobials to target the free-living/exposed bacterial cells at lower concentrations than those needed to treat bacteria within the biofilm. Therefore, a complementary action of antibiofilm and antimicrobial agents can be a robust strategic approach to dealing with infectious diseases. Taken together, these molecules have broad implications for human health.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
6
|
Britton AP, Visser KA, Ongenae VMA, Zhang P, Wassink H, Doerksen TA, Welke CA, Lynch KH, van Belkum MJ, Dennis JJ, Yang X, Claessen D, Briegel A, Martin-Visscher LA. Characterization of Bacteriophage cd2, a Siphophage Infecting Carnobacterium divergens and a Representative Species of a New Genus of Phage. Microbiol Spectr 2023; 11:e0097323. [PMID: 37458599 PMCID: PMC10434151 DOI: 10.1128/spectrum.00973-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/24/2023] [Indexed: 08/19/2023] Open
Abstract
Carnobacterium divergens is frequently isolated from natural environments and is a predominant species found in refrigerated foods, particularly meat, seafood, and dairy. While there is substantial interest in using C. divergens as biopreservatives and/or probiotics, some strains are known to be fish pathogens, and the uncontrolled growth of C. divergens has been associated with food spoilage. Bacteriophages offer a selective approach to identify and control the growth of bacteria; however, to date, few phages targeting C. divergens have been reported. In this study, we characterize bacteriophage cd2, which we recently isolated from minced beef. A detailed host range study reveals that phage cd2 infects certain phylogenetic groups of C. divergens. This phage has a latent period of 60 min and a burst size of ~28 PFU/infected cell. The phage was found to be acid and heat sensitive, with a complete loss of phage activity when stored at pH 2 or heated to 60°C. Electron microscopy shows that phage cd2 is a siphophage, and while it shares the B3 morphotype with a unique cluster of Listeria and Enterococcus phages, a comparison of genomes reveals that phage cd2 comprises a new genus of phage, which we have termed as Carnodivirus. IMPORTANCE Currently, very little is known about phages that infect carnobacteria, an important genus of lactic acid bacteria with both beneficial and detrimental effects in the food and aquaculture industries. This report provides a detailed characterization of phage cd2, a novel siphophage that targets Carnobacterium divergens, and sets the groundwork for understanding the biology of these phages and their potential use in the detection and biocontrol of C. divergens isolates.
Collapse
Affiliation(s)
- Angelle P. Britton
- Department of Chemistry, The King’s University, Edmonton, Alberta, Canada
| | - Kaitlyn A. Visser
- Department of Chemistry, The King’s University, Edmonton, Alberta, Canada
| | - Véronique M. A. Ongenae
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Peipei Zhang
- Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Heather Wassink
- Department of Chemistry, The King’s University, Edmonton, Alberta, Canada
| | - Thomas A. Doerksen
- Department of Chemistry, The King’s University, Edmonton, Alberta, Canada
| | - Catherine A. Welke
- Department of Chemistry, The King’s University, Edmonton, Alberta, Canada
| | - Karlene H. Lynch
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | | |
Collapse
|
7
|
Zhang H, Zhang X, Liang S, Wang J, Zhu Y, Zhang W, Liu S, Schwarz S, Xie F. Bactericidal synergism between phage endolysin Ply2660 and cathelicidin LL-37 against vancomycin-resistant Enterococcus faecalis biofilms. NPJ Biofilms Microbiomes 2023; 9:16. [PMID: 37024490 PMCID: PMC10078070 DOI: 10.1038/s41522-023-00385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Antibiotic resistance and the ability to form biofilms of Enterococcus faecalis have compromised the choice of therapeutic options, which triggered the search for new therapeutic strategies, such as the use of phage endolysins and antimicrobial peptides. However, few studies have addressed the synergistic relationship between these two promising options. Here, we investigated the combination of the phage endolysin Ply2660 and the antimicrobial peptide LL-37 to target drug-resistant biofilm-producing E. faecalis. In vitro bactericidal assays were used to demonstrate the efficacy of the Ply2660-LL-37 combination against E. faecalis. Larger reductions in viable cell counts were observed when Ply2660 and LL-37 were applied together than after individual treatment with either substance. Transmission electron microscopy revealed that the Ply2660-LL-37 combination could lead to severe cell lysis of E. faecalis. The mode of action of the Ply2660-LL-37 combination against E. faecalis was that Ply2660 degrades cell wall peptidoglycan, and subsequently, LL-37 destroys the cytoplasmic membrane. Furthermore, Ply2660 and LL-37 act synergistically to inhibit the biofilm formation of E. faecalis. The Ply2660-LL-37 combination also showed a synergistic effect for the treatment of established biofilm, as biofilm killing with this combination was superior to each substance alone. In a murine peritoneal septicemia model, the Ply2660-LL-37 combination distinctly suppressed the dissemination of E. faecalis isolates and attenuated organ injury, being more effective than each treatment alone. Altogether, our findings indicate that the combination of a phage endolysin and an antimicrobial peptide may be a potential antimicrobial strategy for combating E. faecalis.
Collapse
Affiliation(s)
- Huihui Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xinyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siyu Liang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yao Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wanjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, 14163, Berlin, Germany.
| | - Fang Xie
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
8
|
Wang S, Huang X, Yang J, Yang D, Zhang Y, Hou Y, Lin L, Hua L, Liang W, Wu B, Peng Z. Biocontrol of methicillin-resistant Staphylococcus aureus using a virulent bacteriophage derived from a temperate one. Microbiol Res 2022; 267:127258. [PMID: 36434990 DOI: 10.1016/j.micres.2022.127258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious threat to global public health due to its resistance to specific antibiotics. Bacteriophages particularly the lytic ones are promoted as a potential powerful-tool to combat infections caused by drug resistant bacteria; while several disadvantages limited the application of the temperate ones. In this study, we isolated 14 phages against MRSA strains, and found three ones showed the capacity of killing most of the target MRSA strains. However, whole genome sequencing and generation of lysogens indicated that these three bacteriophage candidates were temperate ones. Therefore, we mutated one (4PHSA25) of them to a virulent bacteriophage (4PHCISA25). Phenotypical characterization assays revealed that 4PHCISA25 had similar lytic spectrum, temperature, pH, and UV sensitivities to 4PHSA25. However, 4PHCISA25 displayed increased lytic activities and decreased bacteriophage insensitive mutant frequency. Biofilm removing assays showed that 4PHCISA25 exhibited a better capacity than 4PHSA25 on eliminating biofilms formed by MRSA strains. Mouse experiments demonstrated that injection of 4PHCISA25 was safe to the mice and treatment with it (109 PFU per mouse) inhibited the development of abscess induced by MRSA within 24 h and promoted the recovery from the clinical signs. Taken together, this study highlights the use of phages combating MRSA.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Centre for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Huang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Centre for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jie Yang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Centre for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dan Yang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Centre for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yue Zhang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Centre for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yanyan Hou
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Centre for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lin Lin
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Centre for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Centre for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wan Liang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Centre for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Centre for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Centre for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
9
|
Anyaegbunam NJ, Anekpo CC, Anyaegbunam ZKG, Doowuese Y, Chinaka CB, Odo OJ, Sharndama HC, Okeke OP, Mba IE. The resurgence of phage-based therapy in the era of increasing antibiotic resistance: From research progress to challenges and prospects. Microbiol Res 2022; 264:127155. [PMID: 35969943 DOI: 10.1016/j.micres.2022.127155] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/23/2022]
Abstract
Phage therapy was implemented almost a century ago but was subsequently abandoned when antibiotics emerged. However, the rapid emergence of drug-resistant, which has brought to the limelight situation reminiscent of the pre-antibiotic era, coupled with the unavailability of new drugs, has triggered the quest for an alternative therapeutic approach, and this has led to the rebirth of phage-derived therapy. Phages are viruses that infect and replicate in bacterial cells. Phage therapy, especially phage-derived proteins, is being given considerable attention among scientists as an antimicrobial agent. They are used alone or in combination with other biomaterials for improved biological activity. Over the years, much has been learned about the genetics and diversity of bacteriophages. Phage cocktails are currently being exploited for treating several infectious diseases as preliminary studies involving animal models and clinical trials show promising therapeutic efficacy. However, despite its numerous advantages, this approach has several challenges and unaddressed limitations. Addressing these issues requires lots of creativity and innovative ideas from interdisciplinary fields. However, with all available indications, phage therapy could hold the solution in this era of increasing antibiotic resistance. This review discussed the potential use of phages and phage-derived proteins in treating drug-resistant bacterial infections. Finally, we highlight the progress, challenges, and knowledge gaps and evaluate key questions requiring prompt attention for the full clinical application of phage therapy.
Collapse
Affiliation(s)
| | - Chijioke Chinedu Anekpo
- Department of Ear Nose and Throat (ENT), College of Medicine, Enugu state University of Science and Technology, Enugu, Nigeria
| | - Zikora Kizito Glory Anyaegbunam
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria Nsukka, Nigeria; Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Yandev Doowuese
- Department of Microbiology, Federal University of Health Sciences, Otukpo, Nigeria
| | | | | | | | | | | |
Collapse
|
10
|
Isolation, characterization and complete genome analysis of a novel bacteriophage vB_EfaS-SRH2 against Enterococcus faecalis isolated from periodontitis patients. Sci Rep 2022; 12:13268. [PMID: 35918375 PMCID: PMC9346004 DOI: 10.1038/s41598-022-16939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Periodontitis is a chronic inflammatory condition that can damage soft tissues and supporting teeth. Enterococcus faecalis is an opportunistic pathogen usually living in the oral cavity and plays a critical role in apical periodontitis that significantly threatens human health. The use of bacteriophages as an alternative way to eliminate bacterial infections is a promising approach. E. faecalis was isolated from the depth of dental packets of patients with periodontitis. Antimicrobial susceptibility was tested using 16 antimicrobial agents. Also, a specific virulent bacteriophage (vB_EfaS-SRH2) with an irregular pentagonal morphology of the head and a non-contractile tail belonging to the Siphoviridae, was isolated from wastewater in East of Isfahan, Iran, and its physiological and genomic specifications were investigated. The genome was double-strand DNA with 38,746 bp length and encoded 62 putative ORFs. In addition, eight Anti-CRISPERs and 30 Rho-dependent terminators were found. No tRNA was found. It had a short latent period of 15 min and a large burst size of ~ 125. No undesirable genes (antibiotic resistance, lysogenic dependence, and virulence factors) were identified in the genome. Based on physiological properties and genomic characteristics, this phage can be used as a suitable choice in phage therapy for periodontitis and root canal infection.
Collapse
|
11
|
El-Atrees DM, El-Kased RF, Abbas AM, Yassien MA. Characterization and anti-biofilm activity of bacteriophages against urinary tract Enterococcus faecalis isolates. Sci Rep 2022; 12:13048. [PMID: 35906280 PMCID: PMC9336127 DOI: 10.1038/s41598-022-17275-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
Strong biofilm-forming Enterococcus feacalis urinary tract pathogens (n = 35) were used to determine the lytic spectrum of six bacteriophages isolated from sewage samples. Only 17 Enterococcus feacalis isolates gave lytic zones with the tested bacteriophages from which five isolates were susceptible to all of them. The isolated enterococcal phages are characterized by wide range of thermal (30–90 °C) and pH (3–10) stability. They belong to order Caudovirales, from which four bacteriophages (EPA, EPB, EPD, EPF) belong to family Myoviridae and two (EPC, EPE) belong to family Siphoviridae. In addition, they have promising antibiofilm activity against the tested strong-forming biofilm E. faecalis isolates. The enterococcal phages reduced the formed and preformed biofilms to a range of 38.02–45.7% and 71.0–80.0%, respectively, as compared to the control. The same promising activities were obtained on studying the anti-adherent effect of the tested bacteriophages on the adherence of bacterial cells to the surface of urinary catheter segments. They reduced the number of adherent cells to a range of 30.8–43.8% and eradicated the pre-adherent cells to a range of 48.2–71.1%, as compared to the control. Overall, the obtained promising antibiofilm activity makes these phages good candidates for application in preventing and treating biofilm associated Enterococcus faecalis infections.
Collapse
Affiliation(s)
- Doaa M El-Atrees
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, 11837, Cairo, Egypt
| | - Reham F El-Kased
- Department of Microbiology, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, 11837, Cairo, Egypt
| | - Ahmad M Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbasia, Cairo, 11566, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University, Sinai, Egypt
| | - Mahmoud A Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization Street, Abbasia, Cairo, 11566, Egypt.
| |
Collapse
|
12
|
Zhao M, Xie R, Wang S, Huang X, Yang H, Wu W, Lin L, Chen H, Fan J, Hua L, Liang W, Zhang J, Wang X, Chen H, Peng Z, Wu B. Identification of a broad-spectrum lytic Myoviridae bacteriophage using multidrug resistant Salmonella isolates from pig slaughterhouses as the indicator and its application in combating Salmonella infections. BMC Vet Res 2022; 18:270. [PMID: 35821025 PMCID: PMC9277904 DOI: 10.1186/s12917-022-03372-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background Salmonella is a leading foodborne and zoonotic pathogen, and is widely distributed in different nodes of the pork supply chain. In recent years, the increasing prevalence of antimicrobial resistant Salmonella poses a threat to global public health. The purpose of this study is to the prevalence of antimicrobial resistant Salmonella in pig slaughterhouses in Hubei Province in China, and explore the effect of using lytic bacteriophages fighting against antimicrobial resistant Salmonella. Results We collected a total of 1289 samples including anal swabs of pigs (862/1289), environmental swabs (204/1289), carcass surface swabs (36/1289) and environmental agar plates (187/1289) from eleven slaughterhouses in seven cities in Hubei Province and recovered 106 Salmonella isolates. Antimicrobial susceptibility testing revealed that these isolates showed a high rate of antimicrobial resistance; over 99.06% (105/106) of them were multidrug resistant. To combat these drug resistant Salmonella, we isolated 37 lytic phages using 106 isolates as indicator bacteria. One of them, designated ph 2–2, which belonged to the Myoviridae family, displayed good capacity to kill Salmonella under different adverse conditions (exposure to different temperatures, pHs, UV, and/or 75% ethanol) and had a wide lytic spectrum. Evaluation in mouse models showed that ph 2–2 was safe and saved 80% (administrated by gavage) and 100% (administrated through intraperitoneal injection) mice from infections caused by Salmonella Typhimurium. Conclusions The data presented herein demonstrated that Salmonella contamination remains a problem in some pig slaughter houses in China and Salmonella isolates recovered in slaughter houses displayed a high rate of antimicrobial resistance. In addition, broad-spectrum lytic bacteriophages may represent a good candidate for the development of anti-antimicrobial resistant Salmonella agents. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03372-8.
Collapse
Affiliation(s)
- Mengfei Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rui Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqing Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Lin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongjian Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wan Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.,Present address: Hubei Jin Xu Agricultural Development Limited by Share Ltd., Wuhan, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Hongshan Laboratory, Wuhan, China.
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Wang Q, Liu N. Complete genome analysis of bacteriophage EFC1 infecting Enterococcus faecalis from chicken. Arch Microbiol 2022; 204:413. [PMID: 35732959 DOI: 10.1007/s00203-022-02838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/20/2022] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
Abstract
A novel lytic Enterococcus faecalis phage, EFC1, was isolated from the sewage of a farm in Handan, China, and its genome was analyzed and described. The phage could infect 87.5% of the chicken-derived Enterococcus faecalis preserved in our laboratory. The genome of phage EFC1 consists of a circular double-stranded DNA with a length of 56,099 bp and a G + C content of 39.96%, containing 89 predicted protein-coding genes as well as 2 tRNAs, which are involved in phage intron, structure, transcription, packaging, DNA replication, modification, cell lysis, and other functions, indicating the genetic and functional characteristics of this phage. Genome comparison analysis revealed that phage EFC1 can be regarded as new genus Saphexavirus phage in the Siphoviridae family.
Collapse
Affiliation(s)
- Qi Wang
- Department of Animal Medicine, College of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China
| | - Na Liu
- Department of Animal Medicine, College of Life Sciences and Food Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan, 056038, China.
| |
Collapse
|
14
|
Tkachev PV, Pchelin IM, Azarov DV, Gorshkov AN, Shamova OV, Dmitriev AV, Goncharov AE. Two Novel Lytic Bacteriophages Infecting Enterococcus spp. Are Promising Candidates for Targeted Antibacterial Therapy. Viruses 2022; 14:831. [PMID: 35458561 PMCID: PMC9030284 DOI: 10.3390/v14040831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/19/2022] Open
Abstract
The rapid emergence of antibiotic resistance is of major concern globally. Among the most worrying pathogenic bacteria are vancomycin-resistant enterococci. Phage therapy is a highly promising method for controlling enterococcal infections. In this study, we described two virulent tailed bacteriophages possessing lytic activity against Enterococcus faecalis and E. faecium isolates. The SSsP-1 bacteriophage belonged to the Saphexavirus genus of the Siphoviridae family, and the GVEsP-1 bacteriophage belonged to the Schiekvirus genus of Herelleviridae. The genomes of both viruses carried putative components of anti-CRISPR systems and did not contain known genes coding for antibiotic-resistance determinants and virulence factors. The conservative arrangement of protein-coding sequences in Saphexavirus and Schiekvirus genomes taken together with positive results of treating enterococcal peritonitis in an animal infection model imply the potential suitability of GVEsP-1 and SSsP-1 bacteriophages for clinical applications.
Collapse
Affiliation(s)
- Pavel V. Tkachev
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.M.P.); (D.V.A.); (O.V.S.); (A.V.D.)
| | - Ivan M. Pchelin
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.M.P.); (D.V.A.); (O.V.S.); (A.V.D.)
| | - Daniil V. Azarov
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.M.P.); (D.V.A.); (O.V.S.); (A.V.D.)
| | - Andrey N. Gorshkov
- Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia;
- Laboratory of Pathomorphology, Almazov National Research Centre, 197341 Saint Petersburg, Russia
| | - Olga V. Shamova
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.M.P.); (D.V.A.); (O.V.S.); (A.V.D.)
| | - Alexander V. Dmitriev
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.M.P.); (D.V.A.); (O.V.S.); (A.V.D.)
| | - Artemiy E. Goncharov
- Scientific and Educational Center “Molecular Bases of Interaction of Microorganisms and Human” of the WCRC “Center for Personalized Medicine”, Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.M.P.); (D.V.A.); (O.V.S.); (A.V.D.)
| |
Collapse
|
15
|
Novel Phage Lysin Abp013 against Acinetobacter baumannii. Antibiotics (Basel) 2022; 11:antibiotics11020169. [PMID: 35203772 PMCID: PMC8868305 DOI: 10.3390/antibiotics11020169] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 01/23/2023] Open
Abstract
As antimicrobial resistance (AMR) continues to pose an ever-growing global health threat, propelling us into a post-antibiotic era, novel alternative therapeutic agents are urgently required. Lysins are bacteriophage-encoded peptidoglycan hydrolases that display great potential as a novel class of antimicrobials for therapeutics. While lysins against Gram-positive bacteria are highly effective when applied exogenously, it is challenging for lysins to access and cleave the peptidoglycan of Gram-negative bacteria due to their outer membrane. In this study, we identify a novel phage lysin Abp013 against Acinetobacter baumannii. Abp013 exhibited significant lytic activity against multidrug-resistant strains of A. baumannii. Notably, we found that Abp013 was able to tolerate the presence of human serum by up to 10%. Using confocal microscopy and LIVE/DEAD staining, we show that Abp013 can access and kill the bacterial cells residing in the biofilm. These results highlight the intrinsic bacteriolytic property of Abp013, suggesting the promising use of Abp013 as a novel therapeutic agent.
Collapse
|
16
|
Yang D, Wang S, Sun E, Chen Y, Hua L, Wang X, Zhou R, Chen H, Peng Z, Wu B. A temperate Siphoviridae bacteriophage isolate from Siberian tiger enhances the virulence of methicillin-resistant Staphylococcus aureus through distinct mechanisms. Virulence 2022; 13:137-148. [PMID: 34986751 PMCID: PMC8741283 DOI: 10.1080/21505594.2021.2022276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The emergence and worldwide spread of Methicillin-resistant Staphylococcus aureus (MRSA) pose a threat to human health. While bacteriophages are recognized as an effective alternative to treat infections caused by drug resistant pathogens, some bacteriophages in particular the temperate bacteriophage may also influence the virulence of the host bacteria in distinct ways. In this study, we isolated a bacteriophage vB_Saus_PHB21 from an epidermal sample of Siberian tiger (Panthera tigris altaica) using an MRSA strain SA14 as the indicator. Our following laboratory tests and whole genome sequencing analyses revealed that vB_Saus_PHB21 was a temperate bacteriophage belonging to the Siphoviridae family, and this bacteriophage did not contain any virulence genes. However, the integration of PHB21 genome into the host MRSA increased the bacterial capacities of cell adhesion, anti-phagocytosis, and biofilm formation. Challenge of the lysogenic strain (SA14+) caused severe mortalities in both Galleria mellonella and mouse models. Mice challenged with SA14+ showed more serious organ lesions and produced higher inflammatory cytokines (IL-8, IFN-γ and TNF-α) compared to those challenged with SA14. In mechanism, we found the integration of PHB21 genome caused the upregulated expression of many genes encoding products involved in bacterial biofilm formation, adherence to host cells, anti-phagocytosis, and virulence. This study may provide novel knowledge of “bacteria-phage-interactions” in MRSA.
Collapse
Affiliation(s)
- Dan Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Microbiology, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Development of Veterinary Diagnostic Products, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Science and Technology International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| | - Shuang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Microbiology, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Development of Veterinary Diagnostic Products, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Science and Technology International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| | - Erchao Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Microbiology, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Development of Veterinary Diagnostic Products, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Science and Technology International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| | - Yibao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Microbiology, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Development of Veterinary Diagnostic Products, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Science and Technology International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Microbiology, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Development of Veterinary Diagnostic Products, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Science and Technology International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Microbiology, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Development of Veterinary Diagnostic Products, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Science and Technology International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Microbiology, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Development of Veterinary Diagnostic Products, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Science and Technology International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Microbiology, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Development of Veterinary Diagnostic Products, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Science and Technology International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Microbiology, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Development of Veterinary Diagnostic Products, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Science and Technology International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Microbiology, Huazhong Agricultural University, Wuhan, China.,Ministry of Agriculture and Rural Affairs Key Laboratory of Development of Veterinary Diagnostic Products, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,Ministry of Science and Technology International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Danis-Wlodarczyk KM, Wozniak DJ, Abedon ST. Treating Bacterial Infections with Bacteriophage-Based Enzybiotics: In Vitro, In Vivo and Clinical Application. Antibiotics (Basel) 2021; 10:1497. [PMID: 34943709 PMCID: PMC8698926 DOI: 10.3390/antibiotics10121497] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past few decades, we have witnessed a surge around the world in the emergence of antibiotic-resistant bacteria. This global health threat arose mainly due to the overuse and misuse of antibiotics as well as a relative lack of new drug classes in development pipelines. Innovative antibacterial therapeutics and strategies are, therefore, in grave need. For the last twenty years, antimicrobial enzymes encoded by bacteriophages, viruses that can lyse and kill bacteria, have gained tremendous interest. There are two classes of these phage-derived enzymes, referred to also as enzybiotics: peptidoglycan hydrolases (lysins), which degrade the bacterial peptidoglycan layer, and polysaccharide depolymerases, which target extracellular or surface polysaccharides, i.e., bacterial capsules, slime layers, biofilm matrix, or lipopolysaccharides. Their features include distinctive modes of action, high efficiency, pathogen specificity, diversity in structure and activity, low possibility of bacterial resistance development, and no observed cross-resistance with currently used antibiotics. Additionally, and unlike antibiotics, enzybiotics can target metabolically inactive persister cells. These phage-derived enzymes have been tested in various animal models to combat both Gram-positive and Gram-negative bacteria, and in recent years peptidoglycan hydrolases have entered clinical trials. Here, we review the testing and clinical use of these enzymes.
Collapse
Affiliation(s)
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
18
|
Rahman MU, Wang W, Sun Q, Shah JA, Li C, Sun Y, Li Y, Zhang B, Chen W, Wang S. Endolysin, a Promising Solution against Antimicrobial Resistance. Antibiotics (Basel) 2021; 10:1277. [PMID: 34827215 PMCID: PMC8614784 DOI: 10.3390/antibiotics10111277] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global crisis for human public health which threatens the effective prevention and control of ever-increasing infectious diseases. The advent of pandrug-resistant bacteria makes most, if not all, available antibiotics invalid. Meanwhile, the pipeline of novel antibiotics development stagnates, which prompts scientists and pharmacists to develop unconventional antimicrobials. Bacteriophage-derived endolysins are cell wall hydrolases which could hydrolyze the peptidoglycan layer from within and outside of bacterial pathogens. With high specificity, rapid action, high efficiency, and low risk of resistance development, endolysins are believed to be among the best alternative therapeutic agents to treat multidrug resistant (MDR) bacteria. As of now, endolysins have been applied to diverse aspects. In this review, we comprehensively introduce the structures and activities of endolysins and summarize the latest application progress of recombinant endolysins in the fields of medical treatment, pathogen diagnosis, food safety, and agriculture.
Collapse
Affiliation(s)
- Mujeeb ur Rahman
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Weixiao Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China;
| | - Qingqing Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, China;
| | - Chao Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Yuanrui Li
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| | - Bailing Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China;
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, China;
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (M.u.R.); (Q.S.); (C.L.); (Y.S.); (Y.L.)
| |
Collapse
|
19
|
Amankwah S, Abdella K, Kassa T. Bacterial Biofilm Destruction: A Focused Review On The Recent Use of Phage-Based Strategies With Other Antibiofilm Agents. Nanotechnol Sci Appl 2021; 14:161-177. [PMID: 34548785 PMCID: PMC8449863 DOI: 10.2147/nsa.s325594] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Biofilms are bacterial communities that live in association with biotic or abiotic surfaces and enclosed in an extracellular polymeric substance. Their formation on both biotic and abiotic surfaces, including human tissue and medical device surfaces, pose a major threat causing chronic infections. In addition, current antibiotics and antiseptic agents have shown limited ability to completely remove biofilms. In this review, the authors provide an overview on the formation of bacterial biofilms and its characteristics, burden and evolution with phages. Moreover, the most recent possible use of phages and phage-derived enzymes to combat bacteria in biofilm structures is elucidated. From the emerging results, it can be concluded that despite successful use of phages and phage-derived products in destroying biofilms, they are mostly not adequate to eradicate all bacterial cells. Nevertheless, a combined therapy with the use of phages and/or phage-derived products with other antimicrobial agents including antibiotics, nanoparticles, and antimicrobial peptides may be effective approaches to remove biofilms from medical device surfaces and to treat their associated infections in humans.
Collapse
Affiliation(s)
- Stephen Amankwah
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Accra Medical Centre, Accra, Ghana
| | - Kedir Abdella
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Tesfaye Kassa
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
20
|
Chegini Z, Khoshbayan A, Vesal S, Moradabadi A, Hashemi A, Shariati A. Bacteriophage therapy for inhibition of multi drug-resistant uropathogenic bacteria: a narrative review. Ann Clin Microbiol Antimicrob 2021; 20:30. [PMID: 33902597 PMCID: PMC8077874 DOI: 10.1186/s12941-021-00433-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
Multi-Drug Resistant (MDR) uropathogenic bacteria have increased in number in recent years and the development of new treatment options for the corresponding infections has become a major challenge in the field of medicine. In this respect, recent studies have proposed bacteriophage (phage) therapy as a potential alternative against MDR Urinary Tract Infections (UTI) because the resistance mechanism of phages differs from that of antibiotics and few side effects have been reported for them. Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis are the most common uropathogenic bacteria against which phage therapy has been used. Phages, in addition to lysing bacterial pathogens, can prevent the formation of biofilms. Besides, by inducing or producing polysaccharide depolymerase, phages can easily penetrate into deeper layers of the biofilm and degrade it. Notably, phage therapy has shown good results in inhibiting multiple-species biofilm and this may be an efficient weapon against catheter-associated UTI. However, the narrow range of hosts limits the use of phage therapy. Therefore, the use of phage cocktail and combination therapy can form a highly attractive strategy. However, despite the positive use of these treatments, various studies have reported phage-resistant strains, indicating that phage–host interactions are more complicated and need further research. Furthermore, these investigations are limited and further clinical trials are required to make this treatment widely available for human use. This review highlights phage therapy in the context of treating UTIs and the specific considerations for this application.
Collapse
Affiliation(s)
- Zahra Chegini
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheil Vesal
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Alireza Moradabadi
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Grabowski Ł, Łepek K, Stasiłojć M, Kosznik-Kwaśnicka K, Zdrojewska K, Maciąg-Dorszyńska M, Węgrzyn G, Węgrzyn A. Bacteriophage-encoded enzymes destroying bacterial cell membranes and walls, and their potential use as antimicrobial agents. Microbiol Res 2021; 248:126746. [PMID: 33773329 DOI: 10.1016/j.micres.2021.126746] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Appearance of pathogenic bacteria resistant to most, if not all, known antibiotics is currently one of the most significant medical problems. Therefore, development of novel antibacterial therapies is crucial for efficient treatment of bacterial infections in the near future. One possible option is to employ enzymes, encoded by bacteriophages, which cause destruction of bacterial cell membranes and walls. Bacteriophages use such enzymes to destroy bacterial host cells at the final stage of their lytic development, in order to ensure effective liberation of progeny virions. Nevertheless, to use such bacteriophage-encoded proteins in medicine and/or biotechnology, it is crucial to understand details of their biological functions and biochemical properties. Therefore, in this review article, we will present and discuss our current knowledge on the processes of bacteriophage-mediated bacterial cell lysis, with special emphasis on enzymes involved in them. Regulation of timing of the lysis is also discussed. Finally, possibilities of the practical use of these enzymes as antibacterial agents will be underlined and perspectives of this aspect will be presented.
Collapse
Affiliation(s)
- Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Krzysztof Łepek
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Małgorzata Stasiłojć
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Katarzyna Kosznik-Kwaśnicka
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Karolina Zdrojewska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Monika Maciąg-Dorszyńska
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822, Gdansk, Poland.
| |
Collapse
|
22
|
LysSAP26, a New Recombinant Phage Endolysin with a Broad Spectrum Antibacterial Activity. Viruses 2020; 12:v12111340. [PMID: 33238548 PMCID: PMC7700246 DOI: 10.3390/v12111340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Multidrug-resistant (MDR) bacteria are a major threat to public health. Bacteriophage endolysins (lysins) are a promising alternative treatment to traditional antibiotics. However, the lysins currently under development are still underestimated. Herein, we cloned the lysin from the SAP-26 bacteriophage genome. The recombinant LysSAP26 protein inhibited the growth of carbapenem-resistant Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, oxacillin-resistant Staphylococcus aureus, and vancomycin-resistant Enterococcus faecium with minimum inhibitory concentrations of 5~80 µg/mL. In animal experiments, mice infected with A. baumannii were protected by LysSAP26, with a 40% survival rate. Transmission electron microscopy analysis confirmed that LysSAP26 treatment resulted in the destruction of bacterial cell walls. LysSAP26 is a new endolysin that can be applied to treat MDR A. baumannii, E. faecium, S. aureus, K. pneumoniae, P. aeruginosa, and E. coli infections, targeting both Gram-positive and Gram-negative bacteria.
Collapse
|