1
|
Dey R, Raghuwanshi R. An insight into pathogenicity and virulence gene content of Xanthomonas spp. and its biocontrol strategies. Heliyon 2024; 10:e34275. [PMID: 39092245 PMCID: PMC11292268 DOI: 10.1016/j.heliyon.2024.e34275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
The genus Xanthomonas primarily serves as a plant pathogen, targeting a diverse range of economically significant crops on a global scale. Xanthomonas spp. utilizes a collection of toxins, adhesins, and protein effectors as part of their toolkit to thrive in their surroundings, and establish themselves within plant hosts. The bacterial secretion systems (Type 1 to Type 6) assist in delivering the effector proteins to their intended destinations. These secretion systems are specialized multi-protein complexes responsible for transporting proteins into the extracellular milieu or directly into host cells. The potent virulence and systematic infection system result in rapid dissemination of the bacteria, posing significant challenges in management due to complexities and substantial loss incurred. Consequently, there has been a notable increase in the utilization of chemical pesticides, leading to bioaccumulation and raising concerns about adverse health effects. Biological control mechanisms through beneficial microorganism (Bacillus, Pseudomonas, Trichoderma, Burkholderia, AMF, etc.) have proven to be an appropriate alternative in integrative pest management system. This review details the pathogenicity and virulence factors of Xanthomonas, as well as its control strategies. It also encourages the use of biological control agents, which promotes sustainable and environmentally friendly agricultural practices.
Collapse
Affiliation(s)
- Riddha Dey
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Richa Raghuwanshi
- Department of Botany, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
2
|
Ananev AA, Ogneva ZV, Nityagovsky NN, Suprun AR, Kiselev KV, Aleynova OA. Whole Genome Sequencing of Bacillus velezensis AMR25, an Effective Antagonist Strain against Plant Pathogens. Microorganisms 2024; 12:1533. [PMID: 39203375 PMCID: PMC11356610 DOI: 10.3390/microorganisms12081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
The most serious problems for cultivated grapes are pathogenic microorganisms, which reduce the yield and quality of fruit. One of the most widespread disease of grapes is "gray mold", caused by the fungus Botrytis cinerea. Some strains of Bacillus, such as Bacillus halotolerans, Bacillus amyloliquefaciens, and Bacillus velezensis, are known to be active against major post-harvest plant rots. In this study, we showed that the endophytic bacteria B. velezensis strain AMR25 isolated from the leaves of wild grapes Vitis amurensis Rupr. exhibited antimicrobial activity against grape pathogens, including B. cinerea. The genome of B. velezensis AMR25 has one circular chromosome with a length of 3,909,646 bp. with 3689 open reading frames. Genomic analysis identified ten gene clusters involved in the nonribosomal synthesis of polyketides (macrolactin, bacillene, and difficidin), lipopeptides (surfactin, fengycin, and bacillizin), and bacteriocins (difficidin). Also, the genome under study contains a number of genes involved in root colonization, biofilm formation, and biosynthesis of phytohormones. Thus, the endophytic bacteria B. velezensis strain AMR25 shows great promise in developing innovative biological products for enhancing plant resistance against various pathogens.
Collapse
Affiliation(s)
| | - Zlata V. Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.A.A.); (N.N.N.); (A.R.S.); (K.V.K.); (O.A.A.)
| | | | | | | | | |
Collapse
|
3
|
Islam T, Haque MA, Barai HR, Istiaq A, Kim JJ. Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative. PLANTS (BASEL, SWITZERLAND) 2024; 13:1135. [PMID: 38674544 PMCID: PMC11054394 DOI: 10.3390/plants13081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The economic impact of phytopathogenic bacteria on agriculture is staggering, costing billions of US dollars globally. Pseudomonas syringae is the top most phytopathogenic bacteria, having more than 60 pathovars, which cause bacteria speck in tomatoes, halo blight in beans, and so on. Although antibiotics or a combination of antibiotics are used to manage infectious diseases in plants, they are employed far less in agriculture compared to human and animal populations. Moreover, the majority of antibiotics used in plants are immediately washed away, leading to environmental damage to ecosystems and food chains. Due to the serious risk of antibiotic resistance (AR) and the potential for environmental contamination with antibiotic residues and resistance genes, the use of unchecked antibiotics against phytopathogenic bacteria is not advisable. Despite the significant concern regarding AR in the world today, there are inadequate and outdated data on the AR of phytopathogenic bacteria. This review presents recent AR data on plant pathogenic bacteria (PPB), along with their environmental impact. In light of these findings, we suggest the use of biocontrol agents as a sustainable, eco-friendly, and effective alternative to controlling phytopathogenic bacteria.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Arif Istiaq
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St Louis, MO 63110-1010, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
4
|
González-León Y, De la Vega-Camarillo E, Ramírez-Vargas R, Anducho-Reyes MA, Mercado-Flores Y. Whole genome analysis of Bacillus velezensis 160, biological control agent of corn head smut. Microbiol Spectr 2024; 12:e0326423. [PMID: 38363138 PMCID: PMC10986511 DOI: 10.1128/spectrum.03264-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Corn head smut is a disease caused by the fungus Sporisorium reilianum. This phytosanitary problem has existed for several decades in the Mezquital Valley, an important corn-producing area in central Mexico. To combat the problem, a strain identified as Bacillus subtilis 160 was applied in the field, where it decreased disease incidence and increased crop productivity. In this study, the sequencing and analysis of the whole genome sequence of this strain were carried out to identify its genetic determinants for the production of antimicrobials. The B. subtilis 160 strain was found to be Bacillus velezensis. Its genome has a size of 4,297,348 bp, a GC content of 45.8%, and 4,174 coding sequences. Comparative analysis with the genomes of four other B. velezensis strains showed that they share 2,804 genes and clusters for the production of difficidin, bacillibactin, bacilysin, macrolantin, bacillaene, fengycin, butirosin A, locillomycin, and surfactin. For the latter metabolite, unlike the other strains that have only one cluster, B. velezensis 160 has three. A cluster for synthesizing laterocidine, an antimicrobial reported only in Brevibacillus laterosporus, was also identified. IMPORTANCE In this study, we performed sequencing and analysis of the complete genome of the strain initially identified as Bacillus subtilis 160 as part of its characterization. This bacterium has shown its ability to control corn head smut in the field, a disease caused by the basidiomycete fungus Sporisorium reilianum. Analyzing the complete genome sequence not only provides a more precise taxonomic identification but also sheds light on the genetic potential of this bacterium, especially regarding mechanisms that allow it to exert biological control. Employing molecular and bioinformatics tools in studying the genomes of agriculturally significant microorganisms offers insights into the development of biofungicides and bioinoculants. These innovations aim to enhance plant growth and pave the way for strategies that boost crop productivity.
Collapse
|
5
|
Utami D, Meale SJ, Young AJ. Bacterial Leaf Spot Susceptibility Screening of Chili Pepper Cultivars Using qPCR Determination of Xanthomonas euvesicatoria pv. euvesicatoria Titers. PHYTOPATHOLOGY 2024; 114:681-689. [PMID: 38079287 DOI: 10.1094/phyto-12-22-0479-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Bacterial leaf spot is a serious disease of chili pepper (Capsicum spp.) caused by Xanthomonas euvesicatoria pv. euvesicatoria. Conventional resistance screening is time and resource intensive. It was considered that a quick and simple determination of cultivar susceptibility could be achieved through estimating bacterial titers of inoculated plants. A SYBR quantitative polymerase chain reaction (qPCR)-based assay was compared with conventional PCR, then used to detect and enumerate pathogen titers in serial dilutions and DNA extracted from infected plant leaves. The qPCR detection limit was approximately 1 CFU µl-1, 10 times more sensitive than conventional PCR. A linear correlation (R2 = 0.994) was obtained from the standard curve comparing plate-truthed serial dilutions of the pathogen with the qPCR cycle threshold. Six strains were used to inoculate cultivars Hugo and Warlock. One strain, X. euvesicatoria pv. euvesicatoria BRIP62403, was consistently the most virulent based on visual symptoms and pathogen titers in planta inferred by qPCR performed on DNA extracted from infected leaves 2 and 6 weeks postinoculation. Visual observations 6 weeks after inoculation were highly correlated (R2 = 0.8254) to pathogen titers. The qPCR method was used to categorize 20 chili pepper cultivars 2 weeks after inoculation. A high positive correlation (R2 = 0.6826) was observed between visual scoring and pathogen titers from 20 chili pepper cultivars, facilitating categorization of susceptible, intermediate, and resistant cultivars. The qPCR approach developed here facilitates susceptibility screening of chili pepper cultivars at an early stage of selection and could be readily adapted to a range of other pathosystems.
Collapse
Affiliation(s)
- Desi Utami
- School of Agriculture and Food Sustainability, Faculty of Science, The University of Queensland, Queensland, 4343, Australia
- Department of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Sarah J Meale
- School of Agriculture and Food Sustainability, Faculty of Science, The University of Queensland, Queensland, 4343, Australia
| | - Anthony J Young
- School of Agriculture and Food Sustainability, Faculty of Science, The University of Queensland, Queensland, 4343, Australia
| |
Collapse
|
6
|
Ranjit S, Deblais L, Rotondo F, Shannon B, Johnson R, Miller SA, Rajashekara G. Discovery of Novel Small Molecule Growth Inhibitors to Manage Pseudomonas Leaf Spot Disease on Peppers ( Capsicum sp.). PLANT DISEASE 2023; 107:3560-3574. [PMID: 37194208 DOI: 10.1094/pdis-12-22-2976-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Pseudomonas leaf spot (PLS) disease in peppers caused by Pseudomonas syringae pv. syringae (Pss) is an emerging seedborne phytopathogen. Pss infection can severely reduce the marketable yield of peppers in favorable environmental conditions and cause significant economic losses. The intensive use of copper-sulfate and streptomycin-sulfate to control PLS and other bacterial diseases is associated with antimicrobial-resistant Pss strains, making these control methods less effective. So, there is an urgent need to develop novel antimicrobials effective against Pss in peppers. Several studies, including those done in our laboratory, have shown that small molecule (SM) antimicrobials are ideal candidates as they can be effective against multidrug resistant bacteria. Therefore, our study aims to identify novel SM growth inhibitors of Pss, assess their safety, and evaluate their efficacy on Pss-infected pepper seeds and seedlings. Using high-throughput screening, we identified 10 SMs (PC1 to PC10) that inhibited the growth of Pss strains at 200 µM or lower concentrations. These SMs were effective against both copper- and streptomycin-resistant as well as biofilm-embedded Pss. These SMs were effective against other plant pathogens (n = 22) at low concentrations (<200 μM) and had no impact on beneficial phytobacteria (n = 12). Furthermore, these SMs showed better or equivalent antimicrobial activity against Pss in infested pepper seeds and inoculated seedlings compared with copper-sulfate (200 μM) and streptomycin (200 μg/ml). Additionally, none of the SMs were toxic to pepper tissues (seeds, seedlings, or fruits), human Caco-2 cells, and pollinator honeybees at 200 μM. Overall, the SMs identified in this study are promising alternative antimicrobials for managing PLS in pepper production.
Collapse
Affiliation(s)
- Sochina Ranjit
- Department of Animal Sciences, The Ohio State University, Wooster, OH
| | - Loïc Deblais
- Department of Animal Sciences, The Ohio State University, Wooster, OH
| | - Francesca Rotondo
- Department of Plant Pathology, The Ohio State University, Wooster, OH
| | - Brandon Shannon
- Department of Entomology, The Ohio State University, Wooster, OH
| | - Reed Johnson
- Department of Entomology, The Ohio State University, Wooster, OH
| | - Sally A Miller
- Department of Plant Pathology, The Ohio State University, Wooster, OH
| | | |
Collapse
|
7
|
Rocha JM, Kovacevik B, Veličkovska SK, Tamame M, Teixeira JA. Screening and Characterization of the Diversity of Food Microorganisms and Their Metabolites. Microorganisms 2023; 11:1235. [PMID: 37317209 DOI: 10.3390/microorganisms11051235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
Food is rarely kept in a sterile environment and the composition of microbial associations found in various foodstuffs is widely varied. Microorganisms in food usually originate from the natural microbiota of raw materials and the surrounding environments. Whether a species prevails depends upon its ability to adapt to intrinsic factors associated with foods, such as nutrient content; pH; water activity; oxidation-reduction potential; and antimicrobial properties, with various extrinsic factors playing a role, including temperature, relative humidity, atmosphere, and ambient pressure. Any change to these parameters may cause changes in the present microbial consortia. Therefore, it is important to identify which microbial consortia will thrive in particular foods and conditions. While active, microorganisms undergo many complex mechanisms that affect food quality and safety. Most beneficial food microorganisms belong to lactic acid bacteria and yeasts. Pathogenic and spoilage bacteria are usually Gram-negative, although there are some Gram-positive ones, such as Listeria monocytogenes, Clostridium botulinum, and C. perfringens. Some may merely cause spoilage, while others may be related to foodborne illnesses.
Collapse
Affiliation(s)
- João Miguel Rocha
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Biljana Kovacevik
- Faculty of Agriculture, University "Goce Delčev", Krste Misirkov bb, 2000 Štip, North Macedonia
| | | | - Mercedes Tamame
- Institute of Functional Biology and Genomics (IBFG), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | | |
Collapse
|
8
|
Hernández-Huerta J, Tamez-Guerra P, Gomez-Flores R, Delgado-Gardea MCE, Robles-Hernández L, Gonzalez-Franco AC, Infante-Ramirez R. Pepper growth promotion and biocontrol against Xanthomonas euvesicatoria by Bacillus cereus and Bacillus thuringiensis formulations. PeerJ 2023; 11:e14633. [PMID: 36710864 PMCID: PMC9881471 DOI: 10.7717/peerj.14633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/04/2022] [Indexed: 01/25/2023] Open
Abstract
Background Bacillus genus has been used in horticultural crops as a biocontrol agent against insect pests, microbial phytopathogens, and plant growth-promoting bacteria (PGPB), representing an alternative to agrochemicals. In particular, B. cereus (Bc) and B. thuringiensis (Bt) have been studied for their fungicidal and insecticidal activities. However, their use as biofertilizer formulations and biocontrol agents against phytopathogenic bacteria is limited. Objective To evaluate Bc and Bt formulations as PGPB and biocontrol agents against the bacterial spot agent Xanthomonas euvesicatoria (Xe) in greenhouse-grown chili peppers. Methods Bc and Bt isolates obtained from soil samples were identified and characterized using conventional biochemical and multiplex PCR identification methods. Bioassays to determine Bc and Bt isolates potential as PGPB were evaluated on chili pepper seedlings in seedbeds. In addition, formulations based on Bc (F-BC26 and F-BC08) and Bt (F-BT24) strains were assessed as biofertilizers on pepper, under controlled conditions. Furthermore, in vitro antagonism assays were performed by confronting Bc and Bt isolate formulations against Xe isolates in direct (foliage) and indirect (resistance induction) phytopathogen biocontrol assays on pepper plants, which were grown under controlled conditions for 15 d after formulations treatment. Results Isolates were identified as Bc and Bt. Formulations significantly improved pepper growth in seedbeds and pots, whereas in vitro bioassays demonstrated the bactericidal effect of Bc and Bt strains against Xe isolates. Furthermore, assays showed significant plant protection by F-BC26, F-BC08, and F-BT24 formulated strains against Xe. Conclusion Results indicated that F-BT24 and F-BC26 isolates formulations promoted pepper growth and protected it against Xanthomonas euvesicatoria.
Collapse
Affiliation(s)
- Jared Hernández-Huerta
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, México
| | - Patricia Tamez-Guerra
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Ricardo Gomez-Flores
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | | | | | | | | |
Collapse
|
9
|
Vlajkov V, Pajčin I, Loc M, Budakov D, Dodić J, Grahovac M, Grahovac J. The Effect of Cultivation Conditions on Antifungal and Maize Seed Germination Activity of Bacillus-Based Biocontrol Agent. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120797. [PMID: 36551004 PMCID: PMC9774550 DOI: 10.3390/bioengineering9120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
Aflatoxin contamination is a global risk and a concerning problem threatening food safety. The biotechnological answer lies in the production of biocontrol agents that are effective against aflatoxins producers. In addition to their biocontrol effect, microbial-based products are recognized as efficient biosolutions for plant nutrition and growth promotion. The present study addresses the characterization of the representative of Phaseolus vulgaris rhizosphere microbiome, Bacillus sp. BioSol021, regarding plant growth promotion traits, including the activity of protease, cellulase, xylanase, and pectinase with the enzymatic activity index values 1.06, 2.04, 2.41, and 3.51, respectively. The potential for the wider commercialization of this kind of product is determined by the possibility of developing a scalable bioprocess solution suitable for technology transfer to an industrial scale. Therefore, the study addresses one of the most challenging steps in bioprocess development, including the production scale-up from the Erlenmeyer flask to the laboratory bioreactor. The results indicated the influence of the key bioprocess parameters on the dual mechanism of action of biocontrol effects against the aflatoxigenic Aspergillus flavus, as well on maize seed germination activity, pointing out the positive impact of high aeration intensity and agitation rate, resulting in inhibition zone diameters of 60 mm, a root length 96 mm, and a shoot length 27 mm.
Collapse
Affiliation(s)
- Vanja Vlajkov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (V.V.); (J.G.)
| | - Ivana Pajčin
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Marta Loc
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Dragana Budakov
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Jelena Dodić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Jovana Grahovac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (V.V.); (J.G.)
| |
Collapse
|
10
|
A Pan-Global Study of Bacterial Leaf Spot of Chilli Caused by Xanthomonas spp. PLANTS 2022; 11:plants11172291. [PMID: 36079673 PMCID: PMC9460788 DOI: 10.3390/plants11172291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Bacterial Leaf Spot (BLS) is a serious bacterial disease of chilli (Capsicum spp.) caused by at least four different Xanthomonas biotypes: X. euvesicatoria pv. euvesicatoria, X. euvesicatoria pv. perforans, X. hortorum pv. gardneri, and X. vesicatoria. Symptoms include black lesions and yellow halos on the leaves and fruits, resulting in reports of up to 66% losses due to unsalable and damaged fruits. BLS pathogens are widely distributed in tropical and subtropical regions. Xanthomonas is able to survive in seeds and crop residues for short periods, leading to the infections in subsequent crops. The pathogen can be detected using several techniques, but largely via a combination of traditional and molecular approaches. Conventional detection is based on microscopic and culture observations, while a suite of Polymerase Chain Reaction (PCR) and Loop-Mediated Isothermal Amplification (LAMP) assays are available. Management of BLS is challenging due to the broad genetic diversity of the pathogens, a lack of resilient host resistance, and poor efficacy of chemical control. Some biological control agents have been reported, including bacteriophage deployment. Incorporating stable host resistance is a critical component in ongoing integrated management for BLS. This paper reviews the current status of BLS of chilli, including its distribution, pathogen profiles, diagnostic options, disease management, and the pursuit of plant resistance.
Collapse
|
11
|
Dmitrović S, Pajčin I, Lukić N, Vlajkov V, Grahovac M, Grahovac J, Jokić A. Taguchi Grey Relational Analysis for Multi-Response Optimization of Bacillus Bacteria Flocculation Recovery from Fermented Broth by Chitosan to Enhance Biocontrol Efficiency. Polymers (Basel) 2022; 14:polym14163282. [PMID: 36015554 PMCID: PMC9413004 DOI: 10.3390/polym14163282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 02/05/2023] Open
Abstract
Degradation of environment is a challenge to crop production around the world. Biological control of various plant diseases using antagonistic bacteria is an encouraging alternative to traditionally used chemical control strategies. Chitosan as a well-known natural flocculation agent also exhibits antimicrobial activity. The goal of this study was to investigate a dual nature of chitosan in flocculation of Bacillus sp. BioSol021 cultivation broth intended for biocontrol applications. Experiments were performed based on L18 standard Taguchi orthogonal array design with five input parameters (chitosan type and dosage, pH value, rapid and slow mixing rates). In this study, the grey relational analysis was used to perform multi-objective optimization of the chosen responses, i.e., flocculation efficiency and four inhibition zone diameters against the selected phytopathogens. The results have indicated a great potential of a highly efficient method for removal of the Bacillus bacteria from the cultivation broth using chitosan. The good flocculation efficiency and high precipitate antimicrobial activity against the selected phytopathogens were achieved. It has been shown that multiple flocculation performance parameters were improved, resulting in slightly improved response values.
Collapse
Affiliation(s)
- Selena Dmitrović
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Ivana Pajčin
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (I.P.); (J.G.)
| | - Nataša Lukić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Vanja Vlajkov
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
| | - Jovana Grahovac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence: (I.P.); (J.G.)
| | - Aleksandar Jokić
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
12
|
Jokić A, Lukić N, Pajčin I, Vlajkov V, Dmitrović S, Grahovac J. Kenics Static Mixer Combined with Gas Sparging for the Improvement of Cross-Flow Microfiltration: Modeling and Optimization. MEMBRANES 2022; 12:membranes12070690. [PMID: 35877892 PMCID: PMC9316954 DOI: 10.3390/membranes12070690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
The use of membrane filtration as a downstream process for microbial biomass harvesting is hampered due to the low permeate flux values achieved during the microfiltration of fermentation broths. Several hydrodynamic methods for increasing permeate flux by creating turbulent flow patterns inside the membrane module are used to overcome this problem. The main goal of this study was to investigate the combined use of a Kenics static mixer and gas sparging during cross-flow microfiltration of Bacillus velezensis IP22 cultivation broth. Optimization of the microfiltration process was performed by using the response surface methodology. It was found that the combined use of a static mixer and gas sparging leads to a considerable increase in the permeate flux, up to the optimum steady-state permeate flux value of 183.42 L·m−2·h−1 and specific energy consumption of 0.844 kW·h·m−3. The optimum steady-state permeate flux is almost four times higher, whilst, at the same time, the specific energy consumption is almost three times lower compared to the optimum results achieved using gas sparging alone. The combination of Kenics static mixer and gas sparging during cross-flow microfiltration is a promising technique for the enhancement of steady-state permeate flux with simultaneously decreasing specific energy consumption.
Collapse
|
13
|
Medium for the Production of Bacillus-Based Biocontrol Agent Effective against Aflatoxigenic Aspergillus flavus: Dual Approach for Modelling and Optimization. Microorganisms 2022; 10:microorganisms10061165. [PMID: 35744682 PMCID: PMC9228200 DOI: 10.3390/microorganisms10061165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
One of the leading limiting factors for wider industrial production and commercialization of microbial biopesticides refers to the high costs of cultivation media. The selection of alternative sources of macronutrients crucial for the growth and metabolic activity of the producing microorganism is a necessary phase of the bioprocess development. Gaining a better understanding of the influence of the medium composition on the biotechnological production of biocontrol agents is enabled through bioprocess modelling and optimization. In the present study, after the selection of optimal carbon and nitrogen sources, two modelling approaches were applied to mathematically describe the behavior of the examined bioprocess—the production of biocontrol agents effective against aflatoxigenic Aspergillus flavus strains. The modelling was performed using four independent variables: cellulose, urea, ammonium sulfate and dipotassium phosphate, and the selected response was the inhibition-zone diameter. After the comparison of the results generated by the Response Surface Methodology (RSM) and the Artificial Neural Network (ANN) approach, the first model was chosen for the further optimization step due to the better fit of the experimental results. As the final investigation step, the optimal cultivation medium composition was defined (g/L): cellulose 5.0, ammonium sulfate 3.77, dipotassium phosphate 0.3, magnesium sulfate heptahydrate 0.3.
Collapse
|
14
|
Suppression of Grape White Rot Caused by Coniella vitis Using the Potential Biocontrol Agent Bacillus velezensis GSBZ09. Pathogens 2022; 11:pathogens11020248. [PMID: 35215191 PMCID: PMC8876275 DOI: 10.3390/pathogens11020248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
Grape white rot caused by Coniella vitis is prevalent in almost all grapevines worldwide and results in a yield loss of 10–20% annually. Bacillus velezensis is a reputable plant growth-promoting bacterial. Strain GSBZ09 was isolated from grapevine cv. Red Globe (Vitis vinifera) and identified as B. velezensis according to morphological, physiological, biochemical characteristics and a multilocus gene sequence analysis (MLSA) based on six housekeeping genes (16S rRNA, gyrB, rpoD, atpD, rho and pgk). B. velezensis GSBZ09 was screened for antifungal activity against C. vitis under in vitro and in vivo conditions. GSBZ09 presented broad spectrum antifungal activity and produced many extracellular enzymes that remarkably inhibited the mycelial growth and spore germination of C. vitis. Furthermore, GSBZ09 had a high capacity for indole-3-acetic acid (IAA) production, siderophore production, and mineral phosphate solubilization. Pot experiments showed that the application of GSBZ09 significantly decreased the disease index of the grape white rot, directly promoted the growth of grapes, and upregulated defense-related enzymes. Overall, the features of B. velezensis GSBZ09 make it a potential strain for application as a biological control agent against C. vitis.
Collapse
|
15
|
Asaturova AM, Bugaeva LN, Homyak AI, Slobodyanyuk GA, Kashutina EV, Yasyuk LV, Sidorov NM, Nadykta VD, Garkovenko AV. Bacillusvelezensis Strains for Protecting Cucumber Plants from Root-Knot Nematode Meloidogyne incognita in a Greenhouse. PLANTS (BASEL, SWITZERLAND) 2022; 11:275. [PMID: 35161255 PMCID: PMC8838184 DOI: 10.3390/plants11030275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Meloidogyne incognita Kofoid et White is one of the most dangerous root-knot nematodes in greenhouses. In this study, we evaluated two Bacillus strains (Bacillus velezensis BZR 86 and Bacillus velezensis BZR 277) as promising microbiological agents for protecting cucumber plants from the root-knot nematode M. incognita Kof. The morphological and cultural characteristics and enzymatic activity of the strains have been studied and the optimal conditions for its cultivation have been developed. We have shown the nematicidal activity of these strains against M. incognita. Experiments with the cucumber variety Courage were conducted under greenhouse conditions in 2016-2018. We determined the effect of plant damage with M. incognita to plants on the biometric parameters of underground and aboveground parts of cucumber plants, as well as on the gall formation index and yield. It was found that the treatment of plants with Bacillus strains contributed to an increase in the height of cucumber plants by 7.4-43.1%, an increase in leaf area by 2.7-17.8%, and an increase in root mass by 3.2-16.1% compared with the control plants without treatment. The application of these strains was proved to contribute to an increase in yield by 4.6-45.8% compared to control. Our experiments suggest that the treatment of cucumber plants with two Bacillus strains improved plant health and crop productivity in the greenhouse. B. velezensis BZR 86 and B. velezensis BZR 277 may form the basis for bionematicides to protect cucumber plants from the root-knot nematode M. incognita.
Collapse
Affiliation(s)
- Anzhela M. Asaturova
- Federal Research Center of Biological Plant Protection, p/o 39, 350039 Krasnodar, Russia; (A.M.A.); (N.M.S.); (V.D.N.)
| | - Ludmila N. Bugaeva
- Lazarevskaya Experimental Plant Protection Station, the Affiliated Branch of the Federal Research Centre of Biological Plant Protection, l. 200, Sochi Highway-77, 354200 Sochi, Russia; (L.N.B.); (G.A.S.); (E.V.K.); (L.V.Y.)
| | - Anna I. Homyak
- Federal Research Center of Biological Plant Protection, p/o 39, 350039 Krasnodar, Russia; (A.M.A.); (N.M.S.); (V.D.N.)
| | - Galina A. Slobodyanyuk
- Lazarevskaya Experimental Plant Protection Station, the Affiliated Branch of the Federal Research Centre of Biological Plant Protection, l. 200, Sochi Highway-77, 354200 Sochi, Russia; (L.N.B.); (G.A.S.); (E.V.K.); (L.V.Y.)
| | - Evgeninya V. Kashutina
- Lazarevskaya Experimental Plant Protection Station, the Affiliated Branch of the Federal Research Centre of Biological Plant Protection, l. 200, Sochi Highway-77, 354200 Sochi, Russia; (L.N.B.); (G.A.S.); (E.V.K.); (L.V.Y.)
| | - Larisa V. Yasyuk
- Lazarevskaya Experimental Plant Protection Station, the Affiliated Branch of the Federal Research Centre of Biological Plant Protection, l. 200, Sochi Highway-77, 354200 Sochi, Russia; (L.N.B.); (G.A.S.); (E.V.K.); (L.V.Y.)
| | - Nikita M. Sidorov
- Federal Research Center of Biological Plant Protection, p/o 39, 350039 Krasnodar, Russia; (A.M.A.); (N.M.S.); (V.D.N.)
| | - Vladimir D. Nadykta
- Federal Research Center of Biological Plant Protection, p/o 39, 350039 Krasnodar, Russia; (A.M.A.); (N.M.S.); (V.D.N.)
| | - Alexey V. Garkovenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 117997 Moscow, Russia;
- Laboratory of Molecular Genetic Research in the Agroindustrial Complex, Department of Biotechnology, Biochemistry and Biophysics, Trubilin Kuban State Agrarian University, Kalinina Str. 13, 350044 Krasnodar, Russia
| |
Collapse
|
16
|
Vlajkov V, Grahovac M, Budakov D, Loc M, Pajčin I, Milić D, Novaković T, Grahovac J. Distribution, Genetic Diversity and Biocontrol of Aflatoxigenic Aspergillus flavus in Serbian Maize Fields. Toxins (Basel) 2021; 13:toxins13100687. [PMID: 34678980 PMCID: PMC8540170 DOI: 10.3390/toxins13100687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Maize is one of the leading export products in the Republic of Serbia. As a country where economic development depends on agriculture, maize production plays a critical role as a crop of strategic importance. Potential aflatoxin contamination of maize poses a risk to food and feed safety and tremendous economic losses. No aflatoxin contamination of maize samples harvested in 2019 and 2020 in different localities in the Republic of Serbia was detected by the Enzyme-Linked Immunosorbent Assay (ELISA) test and High-Performance Liquid Chromatography (HPLC) method. On the other hand, the Cluster Amplification Patterns (CAP) analyses of the isolated Aspergillus flavus strains from 2019 maize samples confirmed the presence of key biosynthesis genes responsible for aflatoxin production. Artificial inoculation and subsequent HPLC analysis of the inoculated maize samples confirmed the high capacity of the A. flavus strains for aflatoxin production, pointing to a high risk of contamination under favorable conditions. Prevention of aflatoxin contamination is primarily based on A. flavus control, where biocontrol agents play a significant role as sustainable disease management tools. In this study, antagonistic activity screening of the novel strains belonging to the Bacillus genus indicated superior suppression of A. flavus strains by two Bacillus strains isolated from the rhizosphere of Phaseolus vulgaris.
Collapse
Affiliation(s)
- Vanja Vlajkov
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (J.G.)
- Correspondence: (V.V.); (M.G.)
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (D.B.); (M.L.); (D.M.); (T.N.)
- Correspondence: (V.V.); (M.G.)
| | - Dragana Budakov
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (D.B.); (M.L.); (D.M.); (T.N.)
| | - Marta Loc
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (D.B.); (M.L.); (D.M.); (T.N.)
| | - Ivana Pajčin
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (J.G.)
| | - Dragan Milić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (D.B.); (M.L.); (D.M.); (T.N.)
| | - Tihomir Novaković
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (D.B.); (M.L.); (D.M.); (T.N.)
| | - Jovana Grahovac
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (J.G.)
| |
Collapse
|
17
|
Jokić A, Pajčin I, Lukić N, Vlajkov V, Kiralj A, Dmitrović S, Grahovac J. Modeling and Optimization of Gas Sparging-Assisted Bacterial Cultivation Broth Microfiltration by Response Surface Methodology and Genetic Algorithm. MEMBRANES 2021; 11:681. [PMID: 34564499 PMCID: PMC8471634 DOI: 10.3390/membranes11090681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 11/17/2022]
Abstract
Production of highly efficient biomass-based microbial biopesticides significantly depends on downstream processing in terms of obtaining as high concentration of viable cells as possible. Microfiltration is one of the recommended operations for microbial biomass separation, but its main limitation is permeate flux decrease due to the membrane fouling. The effect of air sparging as a hydrodynamic technique for improvement of permeate flux during microfiltration of Bacillus velezensis cultivation broth was investigated. Modeling of the microfiltration was performed using the response surface methodology, while desirability function approach and genetic algorithm were applied for optimization, i.e., maximization of permeate flux and minimization of specific energy consumption. The results have revealed antagonistic relationship between the investigated dependent variables. The optimized values of superficial feed velocity and transmembrane pressure were close to the mean values of the investigated value ranges (0.68 bar and 0.96 m/s, respectively), while the optimized value of superficial air velocity had a more narrow distribution around 0.25 m/s. The results of this study have revealed a significant improvement of microfiltration performance by applying air sparging, thus this flux improvement method should be further investigated in downstream processing of different bacterial cultivation broths.
Collapse
Affiliation(s)
| | - Ivana Pajčin
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (A.J.); (N.L.); (V.V.); (A.K.); (S.D.)
| | | | | | | | | | - Jovana Grahovac
- Faculty of Technology Novi Sad, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; (A.J.); (N.L.); (V.V.); (A.K.); (S.D.)
| |
Collapse
|
18
|
Draft Genome Sequence of Bacillus velezensis Strain Marseille-Q1230, Isolated from a Stool Sample from a Severely Malnourished Child. Microbiol Resour Announc 2021; 10:e0051421. [PMID: 34410162 PMCID: PMC8375478 DOI: 10.1128/mra.00514-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacillus velezensis, a species first described in 2005, has been mostly associated with plants and the environment. To date, there is no genome available for this species from human samples. In this announcement, we present the genome of Bacillus velezensis strain Marseille-Q1230, which was isolated from a stool sample from a child suffering from severe acute malnutrition. The genome assembled into 15 contigs and had a size of 3,861,152 bp, with a GC content of 46.6%. A total of 3,716 protein-coding genes, including 3 antibiotic resistance genes and 92 RNAs, were predicted.
Collapse
|
19
|
Jokić A, Pajčin I, Grahovac J, Lukić N, Ikonić B, Nikolić N, Vlajkov V. Dynamic Modeling Using Artificial Neural Network of Bacillus Velezensis Broth Cross-Flow Microfiltration Enhanced by Air-Sparging and Turbulence Promoter. MEMBRANES 2020; 10:membranes10120372. [PMID: 33260842 PMCID: PMC7761049 DOI: 10.3390/membranes10120372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Cross-flow microfiltration is a broadly accepted technique for separation of microbial biomass after the cultivation process. However, membrane fouling emerges as the main problem affecting permeate flux decline and separation process efficiency. Hydrodynamic methods, such as turbulence promoters and air sparging, were tested to improve permeate flux during microfiltration. In this study, a non-recurrent feed-forward artificial neural network (ANN) with one hidden layer was examined as a tool for microfiltration modeling using Bacillus velezensis cultivation broth as the feed mixture, while the Kenics static mixer and two-phase flow, as well as their combination, were used to improve permeate flux in microfiltration experiments. The results of this study have confirmed successful application of the ANN model for prediction of permeate flux during microfiltration of Bacillus velezensis cultivation broth with a coefficient of determination of 99.23% and absolute relative error less than 20% for over 95% of the predicted data. The optimal ANN topology was 5-13-1, trained by the Levenberg-Marquardt training algorithm and with hyperbolic sigmoid transfer function between the input and the hidden layer.
Collapse
|
20
|
Fazle Rabbee M, Baek KH. Antimicrobial Activities of Lipopeptides and Polyketides of Bacillus velezensis for Agricultural Applications. Molecules 2020; 25:molecules25214973. [PMID: 33121115 PMCID: PMC7662345 DOI: 10.3390/molecules25214973] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/17/2022] Open
Abstract
Since the discovery of penicillin, bacteria are known to be major sources of secondary metabolites that can function as drugs or pesticides. Scientists worldwide attempted to isolate novel compounds from microorganisms; however, only less than 1% of all existing microorganisms have been successfully identified or characterized till now. Despite the limitations and gaps in knowledge, in recent years, many Bacillus velezensis isolates were identified to harbor a large number of biosynthetic gene clusters encoding gene products for the production of secondary metabolites. These chemically diverse bioactive metabolites could serve as a repository for novel drug discovery. More specifically, current projects on whole-genome sequencing of B. velezensis identified a large number of biosynthetic gene clusters that encode enzymes for the synthesis of numerous antimicrobial compounds, including lipopeptides and polyketides; nevertheless, their biological applications are yet to be identified or established. In this review, we discuss the recent research on synthesis of bioactive compounds by B. velezensis and related Bacillus species, their chemical structures, bioactive gene clusters of interest, as well as their biological applications for effective plant disease management.
Collapse
|