1
|
Muliya Sankappa N, Shivani Kallappa G, Kallihosuru Boregowda K, Mandrira Ramakrishna N, Kattapuni Suresh P, Shriraje Balakrishna D, Ballamoole KK, Thangavel S, Sahoo L, Lange MD, Deshotel MB, Abernathy JW. Novel lytic bacteriophage AhFM11 as an effective therapy against hypervirulent Aeromonas hydrophila. Sci Rep 2024; 14:16882. [PMID: 39043820 PMCID: PMC11266544 DOI: 10.1038/s41598-024-67768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Several farmed fish species, including carps, tilapia, salmon, and catfish, have experienced significant economic losses in aquaculture due to motile Aeromonas septicemia caused by Aeromonas hydrophila. In the present study, a novel lytic bacteriophage infecting hypervirulent Aeromonas hydrophila (vAh) was isolated and characterized. This is the first report of a phage against vAh. Phage AhFM11 demonstrated lytic activity against both vAh strains and the A. hydrophila reference strain ATCC 35654. The AhFM11 genome was sequenced and assembled, comprising 168,243 bp with an average G + C content of 41.5%. The genome did not harbor any antibiotic resistance genes. Genomic information along with transmission electron microscopy revealed that phage AhFM11 belongs to the Straboviridae family. Therapeutic application of monophage AhFM11 in fish showed 100% survival in injection, 95% in immersion and 93% in oral feeding of phage top-coated feed. Fish and chicken meat spiked with A. hydrophila and phage showed significant reduction of A. hydrophila. These findings support that phage AhFM11 can be used as a biocontrol agent against vAh as an alternative to antibiotics.
Collapse
Affiliation(s)
- Nithin Muliya Sankappa
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangaluru, Karnataka, 575002, India
- ARS Research Participation Program, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, 37830, USA
- Aquatic Animal Health Research Unit, United States Department of Agriculture, Agricultural Research Service, Auburn, AL, 36832, USA
| | - Girisha Shivani Kallappa
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangaluru, Karnataka, 575002, India.
| | - Kushala Kallihosuru Boregowda
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangaluru, Karnataka, 575002, India
| | - Namrutha Mandrira Ramakrishna
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangaluru, Karnataka, 575002, India
| | | | - Dheeraj Shriraje Balakrishna
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangaluru, Karnataka, 575002, India
| | - Krishna Kumar Ballamoole
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Mangaluru, India
| | - Suresh Thangavel
- Department of Aquatic Animal Health Management, College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangaluru, Karnataka, 575002, India
| | - Lopamudra Sahoo
- Department of Fish Genetics and Reproduction, College of Fisheries, Central Agricultural University (Imphal), Lembucherra, Tripura West, Tripura, 799210, India
| | - Miles D Lange
- Aquatic Animal Health Research Unit, United States Department of Agriculture, Agricultural Research Service, Auburn, AL, 36832, USA
| | - Michael B Deshotel
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, 72160, USA
| | - Jason W Abernathy
- Aquatic Animal Health Research Unit, United States Department of Agriculture, Agricultural Research Service, Auburn, AL, 36832, USA.
| |
Collapse
|
2
|
Engel DR, Wagenlehner FME, Shevchuk O. Scientific Advances in Understanding the Pathogenesis, Diagnosis, and Prevention of Urinary Tract Infection in the Past 10 Years. Infect Dis Clin North Am 2024; 38:229-240. [PMID: 38575493 DOI: 10.1016/j.idc.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Urinary tract infection (UTI) is a very common disease that is accompanied by various complications in the affected person. UTI triggers diverse inflammatory reactions locally in the infected urinary bladder and kidney, causing tissue destruction and organ failure. Moreover, systemic responses in the entire body carry the risk of urosepsis with far-reaching consequences. Understanding the cell-, organ-, and systemic mechanisms in UTI are crucial for prevention, early intervention, and current therapeutic approaches. This review summarizes the scientific advances over the last 10 years concerning pathogenesis, prevention, rapid diagnosis, and new treatment approaches. We also highlight the impact of the immune system and potential new therapies to reduce progressive and recurrent UTI.
Collapse
Affiliation(s)
- Daniel R Engel
- Department of Immunodynamics, University Duisburg-Essen, University Hospital Essen, Institute of Experimental Immunology and Imaging, Hufelandstraße 55, 45147 Essen, Germany
| | - Florian M E Wagenlehner
- Justus-Liebig University Giessen, Clinic for Urology, Paediatric Urology and Andrology, Rudolf-Buchheim Straße 7, 35392 Giessen, Germany
| | - Olga Shevchuk
- Department of Immunodynamics, University Duisburg-Essen, University Hospital Essen, Institute of Experimental Immunology and Imaging, Hufelandstraße 55, 45147 Essen, Germany.
| |
Collapse
|
3
|
Amina R, Habiba R, Abouddihaj B. Camel urine as a potential source of bioactive molecules showing their efficacy against pathogens: A systematic review. Saudi J Biol Sci 2024; 31:103966. [PMID: 38495380 PMCID: PMC10940778 DOI: 10.1016/j.sjbs.2024.103966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024] Open
Abstract
Camels are highly suited for severe desert conditions and able to provide most of the natural products like urine, which has been used as alternative medicine to treat diverse infections and disorders. There is, however, a shortage and paucity of scientific reviews highlighting the antifungal, antibacterial and antiviral effects of camel urine. By better understanding its antimicrobial characteristics, our overarching aim is to provide an exhaustive overview of this valuable natural product by synthesizing and summarizing data on the efficacy of this biofluid and also describing the potential substances exhibiting antimicrobial properties. We searched three databases in order to point out relevant articles (Web of Science, Scopus and Google Scholar) until December 2022. Research articles of interest evaluating the antimicrobial effects of camel urine were selected. Overall, camel urine furnished promising antibacterial activities against gram-positive bacteria, namely Staphylococcus aureus (30 mm), Bacillus cereus (22 mm), Bacillus subtilis (25 mm) and Micrococcus luteus (21 mm), as well as gram-negative bacteria, especially Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter cloacae, and Salmonella spp., without forgetting its efficiency on Mycobacterium tuberculosis as well. The excretion also showed its potency against H1N1 virus, vesicular stomatitis virus and middle east respiratory syndrome coronavirus. Similarly, the camel urine featured strong antifungal activity against Candida albicans, Aspergillus niger, Aspergillus flavus and dermatophytes with a minimal inhibitory concentration of 0.625 μg/ml against Trichophyton violaceum, 2.5 μg/ml against Microsporum canis and 1.25 μg/ml against Trichophyton rubrum and Trichophyton mentagrophytes. This comprehensive review will be valuable for researchers interested in investigating the potential of camel urine in the development of novel broad-spectrum key molecules targeting a wide range of drug-resistant pathogenic microorganisms.
Collapse
Affiliation(s)
- Ressmi Amina
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Life Sciences Department, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal 23023, Morocco
| | - Raqraq Habiba
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Life Sciences Department, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal 23023, Morocco
| | - Barguigua Abouddihaj
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Life Sciences Department, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal 23023, Morocco
| |
Collapse
|
4
|
Dong Z, Wu R, Liu L, Ai S, Yang J, Li Q, Fu K, Zhou Y, Fu H, Zhou Z, Liu H, Zhong Z, Qiu X, Peng G. Phage P2-71 against multi-drug resistant Proteus mirabilis: isolation, characterization, and non-antibiotic antimicrobial potential. Front Cell Infect Microbiol 2024; 14:1347173. [PMID: 38500503 PMCID: PMC10945010 DOI: 10.3389/fcimb.2024.1347173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Proteus mirabilis, a prevalent urinary tract pathogen and formidable biofilm producer, especially in Catheter-Associated Urinary Tract Infection, has seen a worrying rise in multidrug-resistant (MDR) strains. This upsurge calls for innovative approaches in infection control, beyond traditional antibiotics. Our research introduces bacteriophage (phage) therapy as a novel non-antibiotic strategy to combat these drug-resistant infections. We isolated P2-71, a lytic phage derived from canine feces, demonstrating potent activity against MDR P. mirabilis strains. P2-71 showcases a notably brief 10-minute latent period and a significant burst size of 228 particles per infected bacterium, ensuring rapid bacterial clearance. The phage maintains stability over a broad temperature range of 30-50°C and within a pH spectrum of 4-11, highlighting its resilience in various environmental conditions. Our host range assessment solidifies its potential against diverse MDR P. mirabilis strains. Through killing curve analysis, P2-71's effectiveness was validated at various MOI levels against P. mirabilis 37, highlighting its versatility. We extended our research to examine P2-71's stability and bactericidal kinetics in artificial urine, affirming its potential for clinical application. A detailed genomic analysis reveals P2-71's complex genetic makeup, including genes essential for morphogenesis, lysis, and DNA modification, which are crucial for its therapeutic action. This study not only furthers the understanding of phage therapy as a promising non-antibiotic antimicrobial but also underscores its critical role in combating emerging MDR infections in both veterinary and public health contexts.
Collapse
Affiliation(s)
- Zhiyou Dong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ruihu Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijuan Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengquan Ai
- New Ruipeng Pet Healthcare Group, Chengdu, China
| | - Jinpeng Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianlan Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keyi Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yunian Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hualin Fu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ziyao Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haifeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xianmeng Qiu
- New Ruipeng Pet Healthcare Group, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Jokar J, Abdulabbas HT, Javanmardi K, Mobasher MA, Jafari S, Ghasemian A, Rahimian N, Zarenezhad A, ُSoltani Hekmat A. Enhancement of bactericidal effects of bacteriophage and gentamicin combination regimen against Staphylococcus aureus and Pseudomonas aeruginosa strains in a mice diabetic wound model. Virus Genes 2024; 60:80-96. [PMID: 38079060 DOI: 10.1007/s11262-023-02037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/17/2023] [Indexed: 02/15/2024]
Abstract
Diabetic patients are more susceptible to developing wound infections resulting in poor and delayed wound healing. Bacteriophages, the viruses that target-specific bacteria, can be used as an alternative to antibiotics to eliminate drug-resistant bacterial infections. Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) are among the most frequently identified pathogens in diabetic foot ulcers (DFUs). The aim of this study was assessment of bacteriophage and gentamicin combination effects on bacterial isolates from DFU infections. Specific bacteriophages were collected from sewage and animal feces samples and the phages were enriched using S. aureus and P. aeruginosa cultures. The lytic potential of phage isolates was assessed by the clarity of plaques. We isolated and characterized four lytic phages: Stp2, Psp1, Stp1, and Psp2. The phage cocktail was optimized and investigated in vitro. We also assessed the effects of topical bacteriophage cocktail gel on animal models of DFU. Results revealed that the phage cocktail significantly reduced the mortality rate in diabetic infected mice. We determined that treatment with bacteriophage cocktail effectively decreased bacterial colony counts and improved wound healing in S. aureus and P. aeruginosa infections, especially when administrated concomitantly with gentamicin. The application of complementary therapy using a phage cocktail and gentamicin, could offer an attractive approach for the treatment of wound diabetic bacterial infections.
Collapse
Affiliation(s)
- Javad Jokar
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Hussein T Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Samawah, Al Muthann, Iraq
| | - Kazem Javanmardi
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Ali Mobasher
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shima Jafari
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
6
|
Al-Anany AM, Hooey PB, Cook JD, Burrows LL, Martyniuk J, Hynes AP, German GJ. Phage Therapy in the Management of Urinary Tract Infections: A Comprehensive Systematic Review. PHAGE (NEW ROCHELLE, N.Y.) 2023; 4:112-127. [PMID: 37771568 PMCID: PMC10523411 DOI: 10.1089/phage.2023.0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Urinary tract infections (UTIs) are a problem worldwide, affecting almost half a billion people each year. Increasing antibiotic resistance and limited therapeutic options have led to the exploration of alternative therapies for UTIs, including bacteriophage (phage) therapy. This systematic review aims at evaluating the efficacy of phage therapy in treating UTIs. We employed a comprehensive search strategy for any language, any animal, and any publication date. A total of 55 in vivo and clinical studies were included. Of the studies, 22% were published in a non-English language, 32.7% were before the year 1996, and the rest were after 2005. The results of this review suggest that phage therapy for UTIs can be effective; more than 72% of the included articles reported microbiological and clinical improvements. On the other hand, only 5 randomized controlled trials have been completed, and case reports and case series information were frequently incomplete for analysis. Overall, this comprehensive systematic review identifies preliminary evidence supporting the potential of phage therapy as a safe and viable option for the treatment of UTIs.
Collapse
Affiliation(s)
- Amany M. Al-Anany
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Payton B. Hooey
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jonathan D. Cook
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Lori L. Burrows
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Julia Martyniuk
- Gerstein Science Information Centre, University of Toronto, Toronto, Canada
| | - Alexander P. Hynes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Greg J. German
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Unity Health Toronto, St. Joseph's Health Centre Chronic Infection/Phage Therapy Clinic, Toronto, Canada
| |
Collapse
|
7
|
Woldeyohannis NN, Desta AF. Fate of antimicrobial resistance genes (ARG) and ARG carriers in struvite production process from human urine. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:783-792. [PMID: 37469114 DOI: 10.1080/10934529.2023.2235246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023]
Abstract
Struvite, a human urine-derived fertilizer types, is characterized by its low water solubility that renders it a slow-releasing eco-friendly fertilizer. Knowing the fate of antibiotic resistance genes in struvite is important since human urine carries microorganisms, viruses and mobilomes. In this study, urine samples were collected and struvite production was done using MgCl2. From the fresh, stored urine and struvite, DNA was extracted and metagenomic sequencing was done using Illumina HiSeqX. Metagenome-derived genome sequence analysis revealed the dominance of phages of Streptococcus, Bacillus and Escherichia, with nearly 50% abundance of streptococcus phage in fresh urine. Increased antibiotic resistance genes were found in the stored urine than in fresh and struvite samples. The top five resistance genes in all the three samples were to aminoglycosides, carbapenem, chloramphenicol, erythromycin and efflux pump, with key carrying pathogens including Acinetobacter, Aeromonas and Enterococcus. The identified families for carbapenem, aminoglycoside resistance and efflux pump were shown persistent in struvite with a shift in gene families. The detection of resistance-gene-laden mobilomes, including the last-resort antibiotics in the struvite sample, requires due attention before the implementation of struvite as fertilizer. Further optimization of the struvite production process with regard to the minimization of mobilomes is recommended.
Collapse
Affiliation(s)
- Nebiyat N Woldeyohannis
- Microbial, Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adey F Desta
- Microbial, Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Ragothaman M, Yoo SY. Engineered Phage-Based Cancer Vaccines: Current Advances and Future Directions. Vaccines (Basel) 2023; 11:vaccines11050919. [PMID: 37243023 DOI: 10.3390/vaccines11050919] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Bacteriophages have emerged as versatile tools in the field of bioengineering, with enormous potential in tissue engineering, vaccine development, and immunotherapy. The genetic makeup of phages can be harnessed for the development of novel DNA vaccines and antigen display systems, as they can provide a highly organized and repetitive presentation of antigens to immune cells. Bacteriophages have opened new possibilities for the targeting of specific molecular determinants of cancer cells. Phages can be used as anticancer agents and carriers of imaging molecules and therapeutics. In this review, we explored the role of bacteriophages and bacteriophage engineering in targeted cancer therapy. The question of how the engineered bacteriophages can interact with the biological and immunological systems is emphasized to comprehend the underlying mechanism of phage use in cancer immunotherapy. The effectiveness of phage display technology in identifying high-affinity ligands for substrates, such as cancer cells and tumor-associated molecules, and the emerging field of phage engineering and its potential in the development of effective cancer treatments are discussed. We also highlight phage usage in clinical trials as well as the related patents. This review provides a new insight into engineered phage-based cancer vaccines.
Collapse
Affiliation(s)
- Murali Ragothaman
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
9
|
Arivarasan VK. Unlocking the potential of phages: Innovative approaches to harnessing bacteriophages as diagnostic tools for human diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:133-149. [PMID: 37770168 DOI: 10.1016/bs.pmbts.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phages, viruses that infect bacteria, have been explored as promising tools for the detection of human disease. By leveraging the specificity of phages for their bacterial hosts, phage-based diagnostic tools can rapidly and accurately detect bacterial infections in clinical samples. In recent years, advances in genetic engineering and biotechnology have enabled the development of more sophisticated phage-based diagnostic tools, including those that express reporter genes or enzymes, or target specific virulence factors or antibiotic resistance genes. However, despite these advancements, there are still challenges and limitations to the use of phage-based diagnostic tools, including concerns over phage safety and efficacy. This review aims to provide a comprehensive overview of the current state of phage-based diagnostic tools, including their advantages, limitations, and potential for future development. By addressing these issues, we hope to contribute to the ongoing efforts to develop safe and effective phage-based diagnostic tools for the detection of human disease.
Collapse
Affiliation(s)
- Vishnu Kirthi Arivarasan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
10
|
Recurrent ESBL Escherichia coli Urosepsis in a Pediatric Renal Transplant Patient Treated With Antibiotics and Bacteriophage Therapy. Pediatr Infect Dis J 2023; 42:43-46. [PMID: 36201671 DOI: 10.1097/inf.0000000000003735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Treating recurrent multidrug resistant (MDR) urosepsis in pediatric transplant recipients can be challenging. Particularly when antibiotics fail to prevent future occurrence and the nidus is seemingly undiscoverable. While there is an increasing amount of data on phage therapy, to our knowledge, there are no published cases involving pediatric renal transplant recipients. Therefore, we present a challenging clinical case in which phage therapy was used in a pediatric renal transplant recipient who developed recurrent MDR urosepsis with an unclear source. CASE PRESENTATION Our patient was a 17-year-old female who initially developed urosepsis caused by extended-spectrum β-lactamase (ESBL) Escherichia coli , while being treated with an immunosuppressant regimen because of kidney rejection secondary to poor immunosuppression therapy compliance. She was admitted to our hospital intermittently for 4 months with 4 episodes of urosepsis caused by ESBL E. coli . She received multiple courses of antibiotics (mainly ertapenem) and underwent a fecal material transplant to eradicate her ESBL E. coli colonized gastrointestinal tract. Because of recurrent development of urosepsis after antibiotic treatment, she later underwent treatment with a phage cocktail consisting of 2 isolate-specific phages. After a prolonged antibiotic course and subsequent 3-week intravenous phage treatment, she had no ESBL E. coli in her urinary cultures for 4 years post-treatment. DISCUSSION This case highlights the challenges of treating recurrent ESBL E. coli infections in a pediatric renal transplant patient and provides evidence that phage therapy may prove useful in such cases.
Collapse
|
11
|
Application of Bacteriophages for Human Health: An Old Approach against Contemporary “Bad Bugs”. Microorganisms 2022; 10:microorganisms10030485. [PMID: 35336061 PMCID: PMC8951251 DOI: 10.3390/microorganisms10030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/28/2022] Open
|
12
|
Veeranarayanan S, Azam AH, Kiga K, Watanabe S, Cui L. Bacteriophages as Solid Tumor Theragnostic Agents. Int J Mol Sci 2021; 23:402. [PMID: 35008840 PMCID: PMC8745063 DOI: 10.3390/ijms23010402] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer, especially the solid tumor sub-set, poses considerable challenges to modern medicine owing to the unique physiological characteristics and substantial variations in each tumor's microenvironmental niche fingerprints. Though there are many treatment methods available to treat solid tumors, still a considerable loss of life happens, due to the limitation of treatment options and the outcomes of ineffective treatments. Cancer cells evolve with chemo- or radiation-treatment strategies and later show adaptive behavior, leading to failed treatment. These challenges demand tailored and individually apt personalized treatment methods. Bacteriophages (or phages) and phage-based theragnostic vectors are gaining attention in the field of modern cancer medicine, beyond their bactericidal ability. With the invention of the latest techniques to fine-tune phages, such as in the field of genetic engineering, synthetic assembly methods, phage display, and chemical modifications, noteworthy progress in phage vector research for safe cancer application has been realized, including use in pre-clinical studies. Herein, we discuss the distinct fingerprints of solid tumor physiology and the potential for bacteriophage vectors to exploit specific tumor features for improvised tumor theragnostic applications.
Collapse
Affiliation(s)
| | | | | | | | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi 3290498, Japan; (S.V.); (A.H.A.); (K.K.); (S.W.)
| |
Collapse
|
13
|
Montelongo Hernandez C, Putonti C, Wolfe AJ. Characterizing Plasmids in Bacteria Species Relevant to Urinary Health. Microbiol Spectr 2021; 9:e0094221. [PMID: 34937183 PMCID: PMC8694116 DOI: 10.1128/spectrum.00942-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022] Open
Abstract
The urinary tract has a microbial community (the urinary microbiota or urobiota) that has been associated with human health. Whole genome sequencing of bacteria is a powerful tool, allowing investigation of the genomic content of the urobiota, also called the urinary microbiome (urobiome). Bacterial plasmids are a significant component of the urobiome yet are understudied. Because plasmids can be vectors and reservoirs for clinically relevant traits, they are important for urobiota dynamics and thus may have relevance to urinary health. In this project, we sought plasmids in 11 clinically relevant urinary species: Aerococcus urinae, Corynebacterium amycolatum, Enterococcus faecalis, Escherichia coli, Gardnerella vaginalis, Klebsiella pneumoniae, Lactobacillus gasseri, Lactobacillus jensenii, Staphylococcus epidermidis, Streptococcus anginosus, and Streptococcus mitis. We found evidence of plasmids in E. faecalis, E. coli, K. pneumoniae, S. epidermidis, and S. anginosus but insufficient evidence in other species sequenced thus far. Some identified plasmidic assemblies were predicted to have putative virulence and/or antibiotic resistance genes, although the majority of their annotated coding regions were of unknown predicted function. In this study, we report on plasmids from urinary species as a first step to understanding the role of plasmids in the bacterial urobiota. IMPORTANCE The microbial community of the urinary tract (urobiota) has been associated with human health. Whole genome sequencing of bacteria permits examination of urobiota genomes, including plasmids. Because plasmids are vectors and reservoirs for clinically relevant traits, they are important for urobiota dynamics and thus may have relevance to urinary health. Currently, urobiota plasmids are understudied. Here, we sought plasmids in 11 clinically relevant urinary species. We found evidence of plasmids in E. faecalis, E. coli, K. pneumoniae, S. epidermidis, and S. anginosus but insufficient evidence in the other 6 species. We identified putative virulence and/or antibiotic resistance genes in some of the plasmidic assemblies, but most of their annotated coding regions were of unknown function. This is a first step to understanding the role of plasmids in the bacterial urobiota.
Collapse
Affiliation(s)
- Cesar Montelongo Hernandez
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, USA
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
14
|
Salabura A, Łuniewski A, Kucharska M, Myszak D, Dołęgowska B, Ciechanowski K, Kędzierska-Kapuza K, Wojciuk B. Urinary Tract Virome as an Urgent Target for Metagenomics. Life (Basel) 2021; 11:life11111264. [PMID: 34833140 PMCID: PMC8618529 DOI: 10.3390/life11111264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Virome—a part of a microbiome—is a term used to describe all viruses found in the specific organism or system. Recently, as new technologies emerged, it has been confirmed that kidneys and the lower urinary tract are colonized not only by the previously described viruses, but also completely novel species. Viruses can be both pathogenic and protective, as they often carry important virulence factors, while at the same time represent anti-inflammatory functions. This paper aims to show and compare the viral species detected in various, specific clinical conditions. Because of the unique characteristics of viruses, new sequencing techniques and databases had to be developed to conduct research on the urinary virome. The dynamic development of research on the human microbiome suggests that the detailed studies on the urinary system virome will provide answers to many questions about the risk factors for civilization, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Agata Salabura
- Clinic of Nephrology, Internal Medicine and Transplantation, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland;
- Correspondence: ; Tel.: +48-664-477-450
| | - Aleksander Łuniewski
- Department of Immunological Diagnostics, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland; (A.Ł.); (M.K.); (D.M.); (B.D.); (B.W.)
| | - Maria Kucharska
- Department of Immunological Diagnostics, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland; (A.Ł.); (M.K.); (D.M.); (B.D.); (B.W.)
| | - Denis Myszak
- Department of Immunological Diagnostics, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland; (A.Ł.); (M.K.); (D.M.); (B.D.); (B.W.)
| | - Barbara Dołęgowska
- Department of Immunological Diagnostics, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland; (A.Ł.); (M.K.); (D.M.); (B.D.); (B.W.)
| | - Kazimierz Ciechanowski
- Clinic of Nephrology, Internal Medicine and Transplantation, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland;
| | - Karolina Kędzierska-Kapuza
- Center of Postgraduate Medical Education in Warsaw, Department of Gastroenterological Surgery and Transplantology, 137 Wołoska St., 02-507 Warsaw, Poland;
| | - Bartosz Wojciuk
- Department of Immunological Diagnostics, Pomeranian Medical University in Szczecin, 70-123 Szczecin, Poland; (A.Ł.); (M.K.); (D.M.); (B.D.); (B.W.)
| |
Collapse
|
15
|
Terwilliger A, Clark J, Karris M, Hernandez-Santos H, Green S, Aslam S, Maresso A. Phage Therapy Related Microbial Succession Associated with Successful Clinical Outcome for a Recurrent Urinary Tract Infection. Viruses 2021; 13:v13102049. [PMID: 34696479 PMCID: PMC8541385 DOI: 10.3390/v13102049] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 01/29/2023] Open
Abstract
We rationally designed a bacteriophage cocktail to treat a 56-year-old male liver transplant patient with complex, recurrent prostate and urinary tract infections caused by an extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) (UCS1). We screened our library for phages that killed UCS1, with four promising candidates chosen for their virulence, mucolytic properties, and ability to reduce bacterial resistance. The patient received 2 weeks of intravenous phage cocktail with concomitant ertapenem for 6 weeks. Weekly serum and urine samples were collected to track the patient’s response. The patient tolerated the phage therapy without any adverse events with symptom resolution. The neutralization of the phage activity occurred with sera collected 1 to 4 weeks after the first phage treatment. This was consistent with immunoassays that detected the upregulation of immune stimulatory analytes. The patient developed asymptomatic recurrent bacteriuria 6 and 11 weeks following the end of phage therapy—a condition that did not require antibiotic treatment. The bacteriuria was caused by a sister strain of E. coli (UCS1.1) that remained susceptible to the original phage cocktail and possessed putative mutations in the proteins involved in adhesion and invasion compared to UCS1. This study highlights the utility of rationally designed phage cocktails with antibiotics at controlling E. coli infection and suggests that microbial succession, without complete eradication, may produce desirable clinical outcomes.
Collapse
Affiliation(s)
- Austen Terwilliger
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Justin Clark
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Maile Karris
- Center for Innovative Phage Applications and Therapeutics, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA;
| | - Haroldo Hernandez-Santos
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Sabrina Green
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
| | - Saima Aslam
- Center for Innovative Phage Applications and Therapeutics, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA 92093, USA;
- Correspondence: (S.A.); (A.M.); Tel.: +1-858-657-7643 (S.A.); +1-713-798-7369 (A.M.)
| | - Anthony Maresso
- TAILΦR Labs, Molecular Virology and Microbiology Department, Baylor College of Medicine, Houston, TX 77030, USA; (A.T.); (J.C.); (H.H.-S.); (S.G.)
- Correspondence: (S.A.); (A.M.); Tel.: +1-858-657-7643 (S.A.); +1-713-798-7369 (A.M.)
| |
Collapse
|
16
|
Bagińska N, Cieślik M, Górski A, Jończyk-Matysiak E. The Role of Antibiotic Resistant A. baumannii in the Pathogenesis of Urinary Tract Infection and the Potential of Its Treatment with the Use of Bacteriophage Therapy. Antibiotics (Basel) 2021; 10:281. [PMID: 33803438 PMCID: PMC8001842 DOI: 10.3390/antibiotics10030281] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
Acinetobacter baumannii are bacteria that belong to the critical priority group due to their carbapenems and third generation cephalosporins resistance, which are last-chance antibiotics. The growing multi-drug resistance and the ability of these bacteria to form biofilms makes it difficult to treat infections caused by this species, which often affects people with immunodeficiency or intensive care unit patients. In addition, most of the infections are associated with catheterization of patients. These bacteria are causative agents, inter alia, of urinary tract infections (UTI) which can cause serious medical and social problems, because of treatment difficulties as well as the possibility of recurrence and thus severely decrease patients' quality of life. Therefore, a promising alternative to standard antibiotic therapy can be bacteriophage therapy, which will generate lower costs and will be safer for the treated patients and has real potential to be much more effective. The aim of the review is to outline the important role of drug-resistant A. baumannii in the pathogenesis of UTI and highlight the potential for fighting these infections with bacteriophage therapy. Further studies on the use of bacteriophages in the treatment of UTIs in animal models may lead to the use of bacteriophage therapy in human urinary tract infections caused by A. baumannii in the future.
Collapse
Affiliation(s)
- Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (N.B.); (M.C.); (A.G.)
| | - Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (N.B.); (M.C.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (N.B.); (M.C.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (N.B.); (M.C.); (A.G.)
| |
Collapse
|