1
|
Chen C, Kang Y, Chen H, Liu Y, Xu M, Long L, Zhang Y, Wu J, Huang C, Wang Y, Yang G. Effects of overwintering cyanobacteria on phosphorus and iron regeneration across the sediment-water interface: A pilot simulation experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161518. [PMID: 36642276 DOI: 10.1016/j.scitotenv.2023.161518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Cyanobacterial blooms are a major environmental problem in eutrophic reservoirs in China. Algal cells can migrate to the sediment surface in winter and maintain biological activity, which could further affect the cycling process of sediment phosphorus (P) and iron (Fe). In this study, a pilot simulation experiment was conducted to investigate the effect of overwintering cyanobacteria (Owc) on P and Fe regeneration across the sediment-water interface (SWI). Owc esterase activity ranged from 16.4 to 26.6 nmol (FDA)/(L·h), with a fluctuating increasing trend within the incubation time. Compared with the control (no Owc), Owc treatment increased the redox potential value (Eh) at the SWI but slightly decreased the pH during the first stage of this experiment (0-24 d); however, the Eh at the SWI under Owc treatment decreased to 50.9 % of that of the control on day 90. The Fe(II) could rapidly oxidized to Fe (oxyhydro)oxides and combine with phosphate in high Eh environments, and Owc inhibited P and Fe release at the SWI within 24 days; however, the continuous decrease in Eh resulted in the reduction of Fe(III). Thus, the Fe concentration measured via diffusive gradients in thin films in the Owc-treated interstitial water gradually increased to 1.92 times that of the control, promoting the release of Fe and P across the SWI. For 13 days after Owc addition, the amount of mobile P in the sediment was significantly higher than that in the control, and it gradually decreased from day 24 to 90, with the lowest being approximately 74.1 % of the amount in the control. The reactive Fe concentration in the sediment showed a similar variation trend. These results indicate that mobile P and reactive Fe in the sediment could be the main sources of regeneration across the SWI in the presence of Owc.
Collapse
Affiliation(s)
- Chao Chen
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Yuxie Kang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Huan Chen
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Min Xu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Lulu Long
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Yanzong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jun Wu
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Chengyi Huang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Yiyao Wang
- Chengdu Operation Center for Environmental Emergencies, Chengdu 610066, China
| | - Gang Yang
- College of Environmental Sciences, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
2
|
Moreno-Andrés J, Rivas-Zaballos I, Acevedo-Merino A, Nebot E. On the Efficacy of H 2O 2 or S 2O 82- at Promoting the Inactivation of a Consortium of Cyanobacteria and Bacteria in Algae-Laden Water. Microorganisms 2022; 10:microorganisms10040735. [PMID: 35456785 PMCID: PMC9024476 DOI: 10.3390/microorganisms10040735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Harmful algal blooms in coastal areas can significantly impact a water source. Microorganisms such as cyanobacteria and associated pathogenic bacteria may endanger an ecosystem and human health by causing significant eco-hazards. This study assesses the efficacy of two different reagents, H2O2 and S2O82−, as (pre-)treatment options for algae-laden waters. Anabaena sp. and Vibrio alginolyticus have been selected as target microorganisms. With the objective of activating H2O2 or S2O82−, additional experiments have been performed with the presence of small amounts of iron (18 µmol/L). For the cyanobacterial case, H2O2-based processes demonstrate greater efficiency over that of S2O82−, as Anabaena sp. is particularly affected by H2O2, for which >90% of growth inhibition has been achieved with 0.088 mmol/L of H2O2 (at 72 h of exposure). The response of Anabaena sp. as a co-culture with V. alginolyticus implies the use of major H2O2 amounts for its inactivation (0.29 mmol/L of H2O2), while the effects of H2O2/Fe(II) suggests an improvement of ~60% compared to single H2O2. These H2O2 doses are not sufficient for preventing the regrowth of V. alginolyticus after 24 h. The effects of S2O82− (+ Fe(II)) are moderate, reaching maximum inhibition growth of ~50% for Anabaena sp. at seven days of exposure. Nevertheless, doses of 3 mmol/L of S2O82− can prevent the regrowth of V. alginolyticus. These findings have implications for the mitigation of HABs but also for the associated bacteria that threaten many coastal ecosystems.
Collapse
Affiliation(s)
- Javier Moreno-Andrés
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR-International Campus of Excellence of the Sea, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Ignacio Rivas-Zaballos
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR-International Campus of Excellence of the Sea, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Asunción Acevedo-Merino
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR-International Campus of Excellence of the Sea, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| | - Enrique Nebot
- Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, INMAR-Marine Research Institute, CEIMAR-International Campus of Excellence of the Sea, University of Cadiz, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|