1
|
Maurin M, Hennebique A, Brunet C, Pondérand L, Pelloux I, Boisset S, Caspar Y. Non-vaccinal prophylaxis of tularemia. Front Microbiol 2024; 15:1507469. [PMID: 39669787 PMCID: PMC11635305 DOI: 10.3389/fmicb.2024.1507469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Tularemia is a re-emerging zoonosis in many endemic countries. It is caused by Francisella tularensis, a gram-negative bacterium and biological threat agent. Humans are infected from the wild animal reservoir, the environmental reservoir or by the bite of arthropod vectors. This infection occurs through the cutaneous, conjunctival, digestive or respiratory routes. Tularemia generally manifests itself as an infection at the site of entry of the bacteria with regional lymphadenopathy, or as a systemic disease, particularly pulmonary. It is often a debilitating condition due to persistent symptoms and sometimes a life-threatening condition. There is effective antibiotic treatment for this disease but no vaccine is currently available for humans or animals. Due to the complexity of the F. tularensis life cycle and multiple modes of human infection, non-vaccine prophylaxis of tularemia is complex and poorly defined. In this review, we summarize the various individual prophylactic measures available against tularemia based on the different risk factors associated with the disease. We also discuss the currently underdeveloped possibilities for collective prophylaxis. Prophylactic measures must be adapted in each tularemia endemic area according to the predominant modes of human and animal infection. They requires a One Health approach to control both animal and environmental reservoirs of F. tularensis, as well as arthropod vectors, to slow the current expansion of endemic areas of this disease in a context of climate change.
Collapse
Affiliation(s)
- Max Maurin
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Recherche Translationnelle et Innovation en Médecine et Complexité (TIMC), Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes, Grenoble, France
| | - Aurélie Hennebique
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Recherche Translationnelle et Innovation en Médecine et Complexité (TIMC), Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes, Grenoble, France
| | - Camille Brunet
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
| | - Léa Pondérand
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| | - Isabelle Pelloux
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
| | - Sandrine Boisset
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| | - Yvan Caspar
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
2
|
Shevtsov A, Dauletov A, Izbanova U, Kairzhanova A, Tursunbay N, Kiyan V, Vergnaud G. Development of a Real-Time PCR Assay for the Detection of Francisella spp. and the Identification of F. tularensis subsp. mediasiatica. Microorganisms 2024; 12:2345. [PMID: 39597734 PMCID: PMC11596666 DOI: 10.3390/microorganisms12112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Tularemia is an acute infectious disease classified as a natural focal infection, requiring continuous monitoring of both human and animal morbidity, as well as tracking of pathogen circulation in natural reservoirs and vectors. These efforts are essential for a comprehensive prevention and containment strategy. The causative agent, Francisella tularensis, comprises three subspecies-tularensis, holarctica, and mediasiatica-which differ in their geographic distribution and virulence. The ability to directly detect the pathogen and differentiate between subspecies has enhanced diagnostics and allowed a more accurate identification of circulation areas. Real-time PCR protocols for identification of F. tularensis subspecies tularensis and holarctica have been developed, utilizing specific primers and probes that target unique genomic regions. In this study, we present the development of a new real-time PCR assay for the detection of Francisella spp. and differentiation of F. tularensis subsp. mediasiatica. The specificity of the assay was tested on DNA from 86 bacterial species across 31 families unrelated to Francisella spp., as well as on DNA collections of F. tularensis subsp. mediasiatica and F. tularensis subsp. holarctica. The limit of detection (LOD95%) for real-time PCR in detecting Francisella spp. was 0.297 fg (0.145 genomic equivalents, GE) for holarctica DNA and 0.733 fg (0.358 GE) for mediasiatica DNA. The LOD95% for subspecies differential identification of mediasiatica was 8.156 fg (3.979, GE). The high sensitivity and specificity of these developed protocols enable direct detection of pathogens in biological and environmental samples, thereby improving the efficiency of tularemia surveillance in Kazakhstan.
Collapse
Affiliation(s)
- Alexandr Shevtsov
- National Center for Biotechnology, Astana 010000, Kazakhstan; (A.D.); (A.K.); (N.T.); (V.K.)
| | - Ayan Dauletov
- National Center for Biotechnology, Astana 010000, Kazakhstan; (A.D.); (A.K.); (N.T.); (V.K.)
| | - Uinkul Izbanova
- Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty 050000, Kazakhstan;
| | - Alma Kairzhanova
- National Center for Biotechnology, Astana 010000, Kazakhstan; (A.D.); (A.K.); (N.T.); (V.K.)
| | - Nailya Tursunbay
- National Center for Biotechnology, Astana 010000, Kazakhstan; (A.D.); (A.K.); (N.T.); (V.K.)
| | - Vladimir Kiyan
- National Center for Biotechnology, Astana 010000, Kazakhstan; (A.D.); (A.K.); (N.T.); (V.K.)
| | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Énergie Atomique (CEA), Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Rigamonti S, Olivieri E, Vicari N, Scaltriti E, Bazzucchi M, Lodola CM, Torri A, Sambri V, Biagetti C, Prati P. Francisella novicida infection in a patient with pulmonary infection and pancreatitis in Italy. IDCases 2024; 37:e02038. [PMID: 39184331 PMCID: PMC11342269 DOI: 10.1016/j.idcr.2024.e02038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Tularemia is a rare but potentially life threatening zoonotic disease caused by Francisella tularensis. F. novicida, previously considered a subspecies of F. tularensis, is currently considered a separate species. Human infections related to F. novicida are exceedingly rare but can cause morbidity and mortality in debilitated or immunocompromised individuals.A 42-year-old male presented at the hospital with vomiting, dehydration, constipation and pain in the right iliac fossa. He was first diagnosed with pancreatitis and admitted for further analysis. Chest computerized tomography scan showed the presence of parenchymal consolidation in the left upper and lower lobes of the lung with pleural effusion. Blood cultures isolated a Gram-negative coccobacillus, that was at first identified by MALDI-TOF as Francisella tularensis. Serological analysis for the detection of total antibodies against F. tularensis and Real-Time PCR targeting the gene coding for 23 kDa, resulting negative. Subsequently, PCR targeting helicases and tul4 genes, and the Regions of Difference RD1 and RD6 were performed allowing the identification of F. novicida. The isolate was further genetically characterized by whole genome sequencing (WGS).This is the first reported case of human infection caused by F. novicida in Italy.Given the rarity of human cases and the lack of specific symptoms, this pathogen is difficult to identify and the diagnosis can be extremely challenging. In this case report, despite the lack of amplification of the gene encoding for 23 kDa protein, the identification of Francisella species was achieved with the amplification of different genes and characterized by WGS.
Collapse
Affiliation(s)
- Sara Rigamonti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Str. Privata Campeggi, 59, Pavia 27100, Italy
| | - Emanuela Olivieri
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Str. Privata Campeggi, 59, Pavia 27100, Italy
| | - Nadia Vicari
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Str. Privata Campeggi, 59, Pavia 27100, Italy
| | - Erika Scaltriti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Str. dei Mercati, 13a, Parma, PR 43126, Italy
| | - Moira Bazzucchi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Str. Privata Campeggi, 59, Pavia 27100, Italy
| | - Claudio Marco Lodola
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Str. Privata Campeggi, 59, Pavia 27100, Italy
| | - Arianna Torri
- Unit of Microbiology, Greater Romagna Hub Laboratory, Piazza della Liberazione, 60, Pievesestina Forlì-Cesena 47522, Italy
| | - Vittorio Sambri
- Unit of Microbiology, Greater Romagna Hub Laboratory, Piazza della Liberazione, 60, Pievesestina Forlì-Cesena 47522, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Irnerio 49, Bologna 40126, Italy
| | - Carlo Biagetti
- Division of Infectious diseases, Infermi Hospital, AUSL Romagna, Viale Luigi Settembrini,2, Rimini 47923, Italy
| | - Paola Prati
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Str. Privata Campeggi, 59, Pavia 27100, Italy
| |
Collapse
|
4
|
Shevtsov A, Izbanova U, Amirgazin A, Kairzhanova A, Dauletov A, Kiyan V, Vergnaud G. Genetic Homogeneity of Francisella tularensis subsp. mediasiatica Strains in Kazakhstan. Pathogens 2024; 13:581. [PMID: 39057808 PMCID: PMC11279412 DOI: 10.3390/pathogens13070581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Tularemia is an acute febrile disease caused by the Gram-negative bacillus Francisella tularensis. Based on genetic and phenotypic characteristics, three subspecies are distinguished: tularensis, holarctica, and mediasiatica. F. tularensis subsp. mediasiatica remains the least studied subspecies. Over the past decade, new foci of distribution of F. tularensis subsp. mediasiatica have been discovered in Russia (Siberia), expanding the possible distribution area by thousands of kilometers. This article provides whole genome single nucleotide polymorphism (wgSNP) and polymorphic tandem repeats (MLVA) analyses of 28 mediasiatica strains isolated between 1965 and 2004 in Kazakhstan. Despite high genetic homogeneity, MLVA with eleven loci (MLVA11) demonstrates a high discriminatory ability (diversity index, 0.9497). The topological structure of the trees based on wgSNP and MLVA is not comparable; however, clustering remains congruent for most outbreaks, with the exception of two strains from one outbreak that are identical in terms of wgSNP but differ at three tandem repeat loci. Based on wgSNP, the strains are assigned to one of the three currently known mediasiatica sublineages, lineage M.I, together with other historical strains maintained in collections in Russia and Sweden. wgSNP shows limited previously unknown genetic diversity, with the M.I lineage size being only 118 SNPs. The wgSNP genotype is not strongly correlated with year and place of isolation.
Collapse
Affiliation(s)
- Alexandr Shevtsov
- National Center for Biotechnology, Astana 010000, Kazakhstan; (A.A.); (A.K.); (A.D.); (V.K.)
| | - Uinkul Izbanova
- Aikimbayev’s National Scientific Center for Especially Dangerous Infections, Almaty 050000, Kazakhstan
| | - Asylulan Amirgazin
- National Center for Biotechnology, Astana 010000, Kazakhstan; (A.A.); (A.K.); (A.D.); (V.K.)
| | - Alma Kairzhanova
- National Center for Biotechnology, Astana 010000, Kazakhstan; (A.A.); (A.K.); (A.D.); (V.K.)
| | - Ayan Dauletov
- National Center for Biotechnology, Astana 010000, Kazakhstan; (A.A.); (A.K.); (A.D.); (V.K.)
| | - Vladimir Kiyan
- National Center for Biotechnology, Astana 010000, Kazakhstan; (A.A.); (A.K.); (A.D.); (V.K.)
| | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Isidro J, Escudero R, Luque-Larena JJ, Pinto M, Borges V, González-Martín-Niño R, Duarte S, Vieira L, Mougeot F, Vidal D, Herrera-Rodríguez D, Rodríguez-Pastor R, Herrero-Cófreces S, Jubete-Tazo F, Gomes JP, Lopes de Carvalho I. Strengthening the genomic surveillance of Francisella tularensis by using culture-free whole-genome sequencing from biological samples. Front Microbiol 2024; 14:1277468. [PMID: 38249473 PMCID: PMC10797068 DOI: 10.3389/fmicb.2023.1277468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Francisella tularensis is a highly infectious bacterium that causes the zoonotic disease tularemia. The development of genotyping methods, especially those based on whole-genome sequencing (WGS), has recently increased the knowledge on the epidemiology of this disease. However, due to the difficulties associated with the growth and isolation of this fastidious pathogen in culture, the availability of strains and subsequently WGS data is still limited. Methods To surpass these constraints, we aimed to implement a culture-free approach to capture and sequence F. tularensis genomes directly from complex samples. Biological samples obtained from 50 common voles and 13 Iberian hares collected in Spain were confirmed as positive for F. tularensis subsp. holarctica and subjected to a WGS target capture and enrichment protocol, using RNA oligonucleotide baits designed to cover F. tularensis genomic diversity. Results We obtained full genome sequences of F. tularensis from 13 animals (20.6%), two of which had mixed infections with distinct genotypes, and achieved a higher success rate when compared with culture-dependent WGS (only successful for two animals). The new genomes belonged to different clades commonly identified in Europe (B.49, B.51 and B.262) and subclades. Despite being phylogenetically closely related to other genomes from Spain, the detected clusters were often found in other countries. A comprehensive phylogenetic analysis, integrating 599 F. tularensis subsp. holarctica genomes, showed that most (sub)clades are found in both humans and animals and that closely related strains are found in different, and often geographically distant, countries. Discussion Overall, we show that the implemented culture-free WGS methodology yields timely, complete and high-quality genomic data of F. tularensis, being a highly valuable approach to promote and potentiate the genomic surveillance of F. tularensis and ultimately increase the knowledge on the genomics, ecology and epidemiology of this highly infectious pathogen.
Collapse
Affiliation(s)
- Joana Isidro
- Genomics and Bioinformatics Unit, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Raquel Escudero
- Reference and Research Laboratory on Special Pathogens, National Centre for Microbiology (CNM), Carlos II Health Institute (ISCIII), Madrid, Spain
| | - Juan José Luque-Larena
- Departamento de Ciencias Agroforestales, Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), E.T.S. Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain
| | - Miguel Pinto
- Genomics and Bioinformatics Unit, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Vítor Borges
- Genomics and Bioinformatics Unit, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Rosa González-Martín-Niño
- Reference and Research Laboratory on Special Pathogens, National Centre for Microbiology (CNM), Carlos II Health Institute (ISCIII), Madrid, Spain
| | - Sílvia Duarte
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Luís Vieira
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - Dolors Vidal
- Área de Microbiología, Facultad de Medicina, Universidad de Catilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Daniel Herrera-Rodríguez
- Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC, UCLM, JCCM), Ciudad Real, Spain
- Área de Microbiología, Facultad de Medicina, Universidad de Catilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Ruth Rodríguez-Pastor
- Department of Parasitology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain, Zaragoza, Spain
- Departamento de Parasitología, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Silvia Herrero-Cófreces
- Departamento de Ciencias Agroforestales, Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), E.T.S. Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain
| | - Fernando Jubete-Tazo
- Departamento de Ciencias Agroforestales, Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), E.T.S. Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Veterinary and Animal Research Center (CECAV), Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Isabel Lopes de Carvalho
- Emergency and Biopreparedness Unit, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
6
|
Candelori A, Di Giuseppe G, Villalobo E, Sjödin A, Vallesi A. Bipolar Biogeographical Distribution of Parafrancisella Bacteria Carried by the Ciliate Euplotes. MICROBIAL ECOLOGY 2023; 86:3128-3132. [PMID: 37433980 DOI: 10.1007/s00248-023-02263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Parafrancisella adeliensis, a Francisella-like endosymbiont, was found to reside in the cytoplasm of an Antarctic strain of the bipolar ciliate species, Euplotes petzi. To inquire whether Euplotes cells collected from distant Arctic and peri-Antarctic sites host Parafrancisella bacteria, wild-type strains of the congeneric bipolar species, E. nobilii, were screened for Parafrancisella by in situ hybridization and 16S gene amplification and sequencing. Results indicate that all Euplotes strains analyzed contained endosymbiotic bacteria with 16S nucleotide sequences closely similar to the P. adeliensis 16S gene sequence. This finding suggests that Parafrancisella/Euplotes associations are not endemic to Antarctica, but are common in both the Antarctic and Arctic regions.
Collapse
Affiliation(s)
- Annalisa Candelori
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy
| | | | - Eduardo Villalobo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Andreas Sjödin
- Division of CBRN Security and Defense, FOI - Swedish Defense Research Agency, Umeå, Sweden
| | - Adriana Vallesi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy.
| |
Collapse
|
7
|
Ladner JT, Sahl JW. Towards a post-pandemic future for global pathogen genome sequencing. PLoS Biol 2023; 21:e3002225. [PMID: 37527248 PMCID: PMC10393143 DOI: 10.1371/journal.pbio.3002225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Pathogen genome sequencing has become a routine part of our response to active outbreaks of infectious disease and should be an important part of our preparations for future epidemics. In this Essay, we discuss the innovations that have enabled routine pathogen genome sequencing, as well as how genome sequences can be used to understand and control the spread of infectious disease. We also explore the impact of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic on the field of pathogen genomics and outline the challenges we must address to further improve the utility of pathogen genome sequencing in the future.
Collapse
Affiliation(s)
- Jason T Ladner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
8
|
Asai M, Li Y, Newton SM, Robertson BD, Langford PR. Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs. FEMS Microbiol Rev 2023; 47:fuad011. [PMID: 36906279 PMCID: PMC10045907 DOI: 10.1093/femsre/fuad011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023] Open
Abstract
Galleria mellonella (greater wax moth) larvae are used widely as surrogate infectious disease models, due to ease of use and the presence of an innate immune system functionally similar to that of vertebrates. Here, we review G. mellonella-human intracellular bacteria pathogen infection models from the genera Burkholderia, Coxiella, Francisella, Listeria, and Mycobacterium. For all genera, G. mellonella use has increased understanding of host-bacterial interactive biology, particularly through studies comparing the virulence of closely related species and/or wild-type versus mutant pairs. In many cases, virulence in G. mellonella mirrors that found in mammalian infection models, although it is unclear whether the pathogenic mechanisms are the same. The use of G. mellonella larvae has speeded up in vivo efficacy and toxicity testing of novel antimicrobials to treat infections caused by intracellular bacteria: an area that will expand since the FDA no longer requires animal testing for licensure. Further use of G. mellonella-intracellular bacteria infection models will be driven by advances in G. mellonella genetics, imaging, metabolomics, proteomics, and transcriptomic methodologies, alongside the development and accessibility of reagents to quantify immune markers, all of which will be underpinned by a fully annotated genome.
Collapse
Affiliation(s)
- Masanori Asai
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Sandra M Newton
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| | - Brian D Robertson
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, South Kensington campus, Imperial College London, London SW7 2AZ, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, St Mary’s campus, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
9
|
Garavaglia M, Muzlera A, Valverde C. Comparative genomics and informational content analysis uncovered internal regions of the core genes rpoD, pepN and gltX for an MLSA with genome-level resolving power within the genus Pseudomonas. Mol Phylogenet Evol 2023; 179:107663. [PMID: 36372354 DOI: 10.1016/j.ympev.2022.107663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/31/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
In the field of prokaryotic taxonomy, there has been a recent transition towards phylogenomics as the gold standard approach. However, genome-based phylogenetics is still restrictive for its cost when managing large amounts of isolates. Fast, cheap, and taxonomically competent alternatives, like multilocus sequence analysis (MLSA) are thus recommendable. Nevertheless, the criteria for selecting the conserved genes for MLSA have not been explicit for different bacterial taxa, including the broadly diverse Pseudomonas genus. Here, we have carried out an unbiased and rational workflow to select internal sequence regions of Pseudomonas core genes (CG) for a MLSA with the best phylogenetic power, and with a resolution comparable to the genome-based ANI approach. A computational workflow was established to inspect 126 complete genomes of representatives from over 60 Pseudomonas species and subspecies, in order to identify the most informative CG internal regions and determine which combinations in sets of three partial CG sequences have comparable phylogenetic resolution to that of the current ANI standard. We found that the rpoD346-1196-pepN1711-2571-gltX86-909 concatenated sequences were the best performing in terms of phylogenetic robustness and resulted highly sensitive and specific when contrasted with ANI. The rpoD-pepN-gltX MLSA was validated in silico and in vitro. Altogether, the results presented here supports the proposal of the rpoD-pepN-gltX MLSA as a fast, affordable, and robust phylogenetic tool for members of the Pseudomonas genus.
Collapse
Affiliation(s)
- Matías Garavaglia
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Andrés Muzlera
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes - CONICET, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Hoffman T, Olsen B, Lundkvist Å. The Biological and Ecological Features of Northbound Migratory Birds, Ticks, and Tick-Borne Microorganisms in the African-Western Palearctic. Microorganisms 2023; 11:microorganisms11010158. [PMID: 36677450 PMCID: PMC9866947 DOI: 10.3390/microorganisms11010158] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Identifying the species that act as hosts, vectors, and vehicles of vector-borne pathogens is vital for revealing the transmission cycles, dispersal mechanisms, and establishment of vector-borne pathogens in nature. Ticks are common vectors for pathogens causing human and animal diseases, and they transmit a greater variety of pathogenic agents than any other arthropod vector group. Ticks depend on the movements by their vertebrate hosts for their dispersal, and tick species with long feeding periods are more likely to be transported over long distances. Wild birds are commonly parasitized by ticks, and their migration patterns enable the long-distance range expansion of ticks. The African-Palearctic migration system is one of the world's largest migrations systems. African-Western Palearctic birds create natural links between the African, European, and Asian continents when they migrate biannually between breeding grounds in the Palearctic and wintering grounds in Africa and thereby connect different biomes. Climate is an important geographical determinant of ticks, and with global warming, the distribution range and abundance of ticks in the Western Palearctic may increase. The introduction of exotic ticks and their microorganisms into the Western Palearctic via avian vehicles might therefore pose a greater risk for the public and animal health in the future.
Collapse
Affiliation(s)
- Tove Hoffman
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
11
|
Furstenau TN, Schneider T, Shaffer I, Vazquez AJ, Sahl J, Fofanov V. MTSv: rapid alignment-based taxonomic classification and high-confidence metagenomic analysis. PeerJ 2022; 10:e14292. [PMID: 36389404 PMCID: PMC9651046 DOI: 10.7717/peerj.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022] Open
Abstract
As the size of reference sequence databases and high-throughput sequencing datasets continue to grow, it is becoming computationally infeasible to use traditional alignment to large genome databases for taxonomic classification of metagenomic reads. Exact matching approaches can rapidly assign taxonomy and summarize the composition of microbial communities, but they sacrifice accuracy and can lead to false positives. Full alignment tools provide higher confidence assignments and can assign sequences from genomes that diverge from reference sequences; however, full alignment tools are computationally intensive. To address this, we designed MTSv specifically for alignment-based taxonomic assignment in metagenomic analysis. This tool implements an FM-index assisted q-gram filter and SIMD accelerated Smith-Waterman algorithm to find alignments. However, unlike traditional aligners, MTSv will not attempt to make additional alignments to a TaxID once an alignment of sufficient quality has been found. This improves efficiency when many reference sequences are available per taxon. MTSv was designed to be flexible and can be modified to run on either memory or processor constrained systems. Although MTSv cannot compete with the speeds of exact k-mer matching approaches, it is reasonably fast and has higher precision than popular exact matching approaches. Because MTSv performs a full alignment it can classify reads even when the genomes share low similarity with reference sequences and provides a tool for high confidence pathogen detection with low off-target assignments to near neighbor species.
Collapse
Affiliation(s)
- Tara N. Furstenau
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, United States
| | - Tsosie Schneider
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, United States
| | - Isaac Shaffer
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, United States
| | - Adam J. Vazquez
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States
| | - Jason Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States
| | - Viacheslav Fofanov
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, United States,Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States
| |
Collapse
|
12
|
Liu X, Clemens DL, Lee BY, Yang X, Zhou ZH, Horwitz MA. Atomic Structure of IglD Demonstrates Its Role as a Component of the Baseplate Complex of the Francisella Type VI Secretion System. mBio 2022; 13:e0127722. [PMID: 36036641 PMCID: PMC9600919 DOI: 10.1128/mbio.01277-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Francisella tularensis, a Tier 1 select agent of bioterrorism, contains a type VI secretion system (T6SS) encoded within the Francisella pathogenicity island (FPI), which is critical for its pathogenesis. Among the 18 proteins encoded by FPI is IglD, which is essential to Francisella's intracellular growth and virulence, but neither its location within T6SS nor its functional role has been established. Here, we present the cryoEM structure of IglD from Francisella novicida and show that the Francisella IglD forms a homotrimer that is structurally homologous to the T6SS baseplate protein TssK in Escherichia coli. Each IglD monomer consists of an N-terminal β-sandwich domain, a 4-helix bundle domain, and a flexible C-terminal domain. While the overall folds of IglD and TssK are similar, the two structures differ in three aspects: the relative orientation between their β-sandwich and the 4-helix bundle domains; two insertion loops present in TssK's β-sandwich domain; and, consequently, a lack of subunit-subunit interaction between insertion loops in the IglD trimer. Phylogenetic analysis indicates that IglD is genetically remote from the TssK orthologs in other T6SSs. While the other components of the Francisella baseplate are unknown, we conducted pulldown assays showing IglJ interacts with IglD and IglH, pointing to a model wherein IglD, IglH, and IglJ form the baseplate of the Francisella T6SS. Alanine substitution mutagenesis further established that IglD's hydrophobic pocket in the N-terminal β-sandwich domain interacts with two loops of IglJ, reminiscent of the TssK-TssG interaction. These results form a framework for understanding the hitherto unexplored Francisella T6SS baseplate. IMPORTANCE Francisella tularensis is a facultatively intracellular Gram-negative bacterium that causes the serious and potentially fatal zoonotic illness, tularemia. Because of its extraordinarily high infectivity and mortality to humans, especially when inhaled, F. tularensis is considered a potential bioterrorism agent and is classified as a Tier 1 select agent. The type VI secretion system (T6SS) encoded within the Francisella pathogenicity island (FPI) is critical to its pathogenesis, but its baseplate components are largely unknown. Here, we report the cryoEM structure of IglD from Francisella novicida and demonstrate its role as a component of the baseplate complex of the Francisella T6SS. We further show that IglD interacts with IglJ and IglH, and propose a model in which these proteins interact to form the Francisella T6SS baseplate. Elucidation of the structure and composition of the Francisella baseplate should facilitate the design of strategies to prevent and treat infections caused by F. tularensis.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- The California NanoSystems Institute (CNSI), UCLA, Los Angeles, California, USA
| | | | - Bai-Yu Lee
- Department of Medicine, UCLA, Los Angeles, California, USA
| | - Xue Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- The California NanoSystems Institute (CNSI), UCLA, Los Angeles, California, USA
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- The California NanoSystems Institute (CNSI), UCLA, Los Angeles, California, USA
| | - Marcus A. Horwitz
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- Department of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
13
|
Wagner DM, Birdsell DN, McDonough RF, Nottingham R, Kocos K, Celona K, Özsürekci Y, Öhrman C, Karlsson L, Myrtennäs K, Sjödin A, Johansson A, Keim PS, Forsman M, Sahl JW. Genomic characterization of Francisella tularensis and other diverse Francisella species from complex samples. PLoS One 2022; 17:e0273273. [PMID: 36223396 PMCID: PMC9555625 DOI: 10.1371/journal.pone.0273273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022] Open
Abstract
Francisella tularensis, the bacterium that causes the zoonosis tularemia, and its genetic near neighbor species, can be difficult or impossible to cultivate from complex samples. Thus, there is a lack of genomic information for these species that has, among other things, limited the development of robust detection assays for F. tularensis that are both specific and sensitive. The objective of this study was to develop and validate approaches to capture, enrich, sequence, and analyze Francisella DNA present in DNA extracts generated from complex samples. RNA capture probes were designed based upon the known pan genome of F. tularensis and other diverse species in the family Francisellaceae. Probes that targeted genomic regions also present in non-Francisellaceae species were excluded, and probes specific to particular Francisella species or phylogenetic clades were identified. The capture-enrichment system was then applied to diverse, complex DNA extracts containing low-level Francisella DNA, including human clinical tularemia samples, environmental samples (i.e., animal tissue and air filters), and whole ticks/tick cell lines, which was followed by sequencing of the enriched samples. Analysis of the resulting data facilitated rigorous and unambiguous confirmation of the detection of F. tularensis or other Francisella species in complex samples, identification of mixtures of different Francisella species in the same sample, analysis of gene content (e.g., known virulence and antimicrobial resistance loci), and high-resolution whole genome-based genotyping. The benefits of this capture-enrichment system include: even very low target DNA can be amplified; it is culture-independent, reducing exposure for research and/or clinical personnel and allowing genomic information to be obtained from samples that do not yield isolates; and the resulting comprehensive data not only provide robust means to confirm the presence of a target species in a sample, but also can provide data useful for source attribution, which is important from a genomic epidemiology perspective.
Collapse
Affiliation(s)
- David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- * E-mail:
| | - Dawn N. Birdsell
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Ryelan F. McDonough
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Roxanne Nottingham
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Karisma Kocos
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Kimberly Celona
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Yasemin Özsürekci
- Department of Pediatric Infectious Diseases, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Caroline Öhrman
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Linda Karlsson
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Kerstin Myrtennäs
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Andreas Sjödin
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Anders Johansson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Paul S. Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Mats Forsman
- CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
14
|
Co-Occurrence of Francisella, Spotted Fever Group Rickettsia, and Midichloria in Avian-Associated Hyalomma rufipes. Microorganisms 2022; 10:microorganisms10071393. [PMID: 35889112 PMCID: PMC9323704 DOI: 10.3390/microorganisms10071393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
The migratory behavior of wild birds contributes to the geographical spread of ticks and their microorganisms. In this study, we aimed to investigate the dispersal and co-occurrence of Francisella and spotted fever group Rickettsia (SFGR) in ticks infesting birds migrating northward in the African-Western Palaearctic region (AWPR). Birds were trapped with mist nests across the Mediterranean basin during the 2014 and 2015 spring migration. In total, 575 ticks were collected from 244 birds. We screened the ticks for the species Francisella tularensis, the genus Francisella, and SFGR by microfluidic real-time PCR. Confirmatory analyses and metagenomic sequencing were performed on tick samples that putatively tested positive for F. tularensis during initial screenings. Hyalomma rufipes was the most common tick species and had a high prevalence of Francisella, including co-occurrence of Francisella and SFGR. Metagenomic analysis of total DNA extracted from two H. rufipes confirmed the presence of Francisella, Rickettsia, and Midichloria. Average nucleotide identity and phylogenetic inference indicated the highest identity of the metagenome-assembled genomes to a Francisella-like endosymbiont (FLE), Rickettsia aeschlimannii, and Midichloria mitochondrii. The results of this study suggest that (i) FLE- and SFGR-containing ticks are dispersed by northbound migratory birds in the AWPR, (ii) H. rufipes likely is not involved in transmission of F. tularensis in the AWPR, and (iii) a dual endosymbiosis of FLEs and Midichloria may support some of the nutritional requirements of H. rufipes.
Collapse
|
15
|
Deatherage Kaiser BL, Birdsell DN, Hutchison JR, Thelaus J, Jenson SC, Andrianaivoarimanana V, Byström M, Myrtennäs K, McDonough RF, Nottingham RD, Sahl JW, Schweizer HP, Rajerison M, Forsman M, Wunschel DS, Wagner DM. Proteomic Signatures of Antimicrobial Resistance in Yersinia pestis and Francisella tularensis. Front Med (Lausanne) 2022; 9:821071. [PMID: 35223919 PMCID: PMC8866660 DOI: 10.3389/fmed.2022.821071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance (AMR) is a well-recognized, widespread, and growing issue of concern. With increasing incidence of AMR, the ability to respond quickly to infection with or exposure to an AMR pathogen is critical. Approaches that could accurately and more quickly identify whether a pathogen is AMR also are needed to more rapidly respond to existing and emerging biological threats. We examined proteins associated with paired AMR and antimicrobial susceptible (AMS) strains of Yersinia pestis and Francisella tularensis, causative agents of the diseases plague and tularemia, respectively, to identify whether potential existed to use proteins as signatures of AMR. We found that protein expression was significantly impacted by AMR status. Antimicrobial resistance-conferring proteins were expressed even in the absence of antibiotics in growth media, and the abundance of 10–20% of cellular proteins beyond those that directly confer AMR also were significantly changed in both Y. pestis and F. tularensis. Most strikingly, the abundance of proteins involved in specific metabolic pathways and biological functions was altered in all AMR strains examined, independent of species, resistance mechanism, and affected cellular antimicrobial target. We have identified features that distinguish between AMR and AMS strains, including a subset of features shared across species with different resistance mechanisms, which suggest shared biological signatures of resistance. These features could form the basis of novel approaches to identify AMR phenotypes in unknown strains.
Collapse
Affiliation(s)
- Brooke L Deatherage Kaiser
- Pacific Northwest National Laboratory, Chemical and Biological Signatures Group, Richland, WA, United States
| | - Dawn N Birdsell
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Janine R Hutchison
- Pacific Northwest National Laboratory, Chemical and Biological Signatures Group, Richland, WA, United States
| | - Johanna Thelaus
- Swedish Defence Research Agency, Chemical, Biological, Radioactive, and Nuclear (CBRN) - Defence and Security, Umeå, Sweden
| | - Sarah C Jenson
- Pacific Northwest National Laboratory, Chemical and Biological Signatures Group, Richland, WA, United States
| | | | - Mona Byström
- Swedish Defence Research Agency, Chemical, Biological, Radioactive, and Nuclear (CBRN) - Defence and Security, Umeå, Sweden
| | - Kerstin Myrtennäs
- Swedish Defence Research Agency, Chemical, Biological, Radioactive, and Nuclear (CBRN) - Defence and Security, Umeå, Sweden
| | - Ryelan F McDonough
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Roxanne D Nottingham
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Herbert P Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Minoarisoa Rajerison
- Plague Unit, Central Laboratory for Plague, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Mats Forsman
- Swedish Defence Research Agency, Chemical, Biological, Radioactive, and Nuclear (CBRN) - Defence and Security, Umeå, Sweden
| | - David S Wunschel
- Pacific Northwest National Laboratory, Chemical and Biological Signatures Group, Richland, WA, United States
| | - David M Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
16
|
Kajeekul R, Insiripong S, Riwlord A, Poomchuchit S, Kerdsin A. Francisella sp., a Close Relative of Francisella orientalis, Causing Septicemia with Cholestatic Hepatitis in a Patient with Anti-Interferon-γ (IFN-γ) Autoantibodies. Trop Med Infect Dis 2022; 7:tropicalmed7020025. [PMID: 35202220 PMCID: PMC8874608 DOI: 10.3390/tropicalmed7020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Francisella is an intracellular, fastidious, Gram-negative bacterium that is difficult to identify using routine microbiological methods in the laboratory. We studied the isolation of Francisella sp. (strain IDAMR664) from the blood of a patient with anti-interferon-γ (IFN-γ) autoantibodies who presented with septicemia and cholestatic hepatitis. Analysis of the strain IDAMR664 genome sequence revealed the isolate was closely related to the strain GA01-2794 that had been isolated from a human in the USA. In addition, it was clustered with F. orientalis, a fish pathogen. The isolate contained several virulence factors and had Francisella pathogenicity island pattern no. 3.
Collapse
Affiliation(s)
- Rattagan Kajeekul
- Department of Medicine, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima 30000, Thailand; (R.K.); (S.I.)
| | - Somchai Insiripong
- Department of Medicine, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima 30000, Thailand; (R.K.); (S.I.)
| | - Athita Riwlord
- Clinical Microbiology Laboratory, Department of Medical Technology, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima 30000, Thailand;
| | - Suleeporn Poomchuchit
- Department of Community Health, Faculty of Public Health, Chalermphrakiat Sakon Nakhon Province Campus, Kasetsart University, Sakon Nakhon 47000, Thailand;
| | - Anusak Kerdsin
- Department of Community Health, Faculty of Public Health, Chalermphrakiat Sakon Nakhon Province Campus, Kasetsart University, Sakon Nakhon 47000, Thailand;
- Correspondence: ; Tel.: +66-42-725-023
| |
Collapse
|
17
|
Roe C, Vazquez AJ, Phillips PD, Allender CJ, Bowen RA, Nottingham RD, Doyle A, Wongsuwan G, Wuthiekanun V, Limmathurotsakul D, Peacock S, Keim P, Tuanyok A, Wagner DM, Sahl JW. Multiple phylogenetically-diverse, differentially-virulent Burkholderia pseudomallei isolated from a single soil sample collected in Thailand. PLoS Negl Trop Dis 2022; 16:e0010172. [PMID: 35143500 PMCID: PMC8865643 DOI: 10.1371/journal.pntd.0010172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/23/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Burkholderia pseudomallei is a soil-dwelling bacterium endemic to Southeast Asia and northern Australia that causes the disease, melioidosis. Although the global genomic diversity of clinical B. pseudomallei isolates has been investigated, there is limited understanding of its genomic diversity across small geographic scales, especially in soil. In this study, we obtained 288 B. pseudomallei isolates from a single soil sample (~100g; intensive site 2, INT2) collected at a depth of 30cm from a site in Ubon Ratchathani Province, Thailand. We sequenced the genomes of 169 of these isolates that represent 7 distinct sequence types (STs), including a new ST (ST1820), based on multi-locus sequence typing (MLST) analysis. A core genome SNP phylogeny demonstrated that all identified STs share a recent common ancestor that diverged an estimated 796-1260 years ago. A pan-genomics analysis demonstrated recombination between clades and intra-MLST phylogenetic and gene differences. To identify potential differential virulence between STs, groups of BALB/c mice (5 mice/isolate) were challenged via subcutaneous injection (500 CFUs) with 30 INT2 isolates representing 5 different STs; over the 21-day experiment, eight isolates killed all mice, 2 isolates killed an intermediate number of mice (1-2), and 20 isolates killed no mice. Although the virulence results were largely stratified by ST, one virulent isolate and six attenuated isolates were from the same ST (ST1005), suggesting that variably conserved genomic regions may contribute to virulence. Genomes from the animal-challenged isolates were subjected to a bacterial genome-wide association study to identify genomic regions associated with differential virulence. One associated region is a unique variant of Hcp1, a component of the type VI secretion system, which may result in attenuation. The results of this study have implications for comprehensive sampling strategies, environmental exposure risk assessment, and understanding recombination and differential virulence in B. pseudomallei.
Collapse
Affiliation(s)
- Chandler Roe
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Adam J. Vazquez
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Paul D. Phillips
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Chris J. Allender
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Richard A. Bowen
- Department of Biological Sciences, Colorado State University, Ft. Collins, Colorado, United States of America
| | - Roxanne D. Nottingham
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Adina Doyle
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Gumphol Wongsuwan
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | | | - Sharon Peacock
- Department of Medicine, University of Cambridge, Cambridge, England
| | - Paul Keim
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Apichai Tuanyok
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - David M. Wagner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jason W. Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| |
Collapse
|
18
|
Detection and Genotyping of Francisella tularensis in Animal Hosts and Vectors from Six Different Natural Landscape Areas, Gansu Province, China. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6820864. [PMID: 34961822 PMCID: PMC8710147 DOI: 10.1155/2021/6820864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Objective Tularemia, also known as hare fever, is caused by the bacterium Francisella tularensis (F. tularensis) transmitted through diseased wild animals, blood sucking insects, or contaminated water or food, which is distributed worldwide. The purpose of this study was to investigate F. tularensis infection in animal hosts and vectors from six different natural landscape areas in Gansu Province and to identify the genotypes of the detected F. tularensis. Methods Rodents were captured by snap traps, and ticks were collected by dragging a cloth over the vegetation or from domestic animals. After species identification, DNA was isolated from the captured animals and detected by nested PCR assays targeting the F. tularensis fopA gene. The positive samples were further amplified to discriminate the species, and another two short-sequence tandem repeat regions (SSTR) were amplified to identify their genotypes. All positive fragments were sequenced and analyzed by ClustalX (5.0) and DNAClub software. Results A total of 407 rodents of 12 species were captured, among which six rodent species were positive for F. tularensis, with an overall prevalence of 3.93%. The geographical difference in infection rate was statistically significant. At the SSTR9 locus, there were 7 genotypes among positive rodent samples. A total of 1864 ticks were tested for evidence of tularemia by nested PCR assays, 69 of which were positive, with an average positive rate of 3.70% for F. tularensis in ticks. The positive rates were significantly different among different regions. Seven genotypes were identified at the SSTR9 locus, one of which seemed dominant in positive tick samples. All positive samples had the same genotype at the SSTR16 locus. Conclusion There is natural infection of F. tularensis among animal vectors and hosts in Gansu Province, with diverse genotypes.
Collapse
|
19
|
Brunet CD, Hennebique A, Peyroux J, Pelloux I, Caspar Y, Maurin M. Presence of Francisella tularensis subsp. holarctica DNA in the Aquatic Environment in France. Microorganisms 2021; 9:microorganisms9071398. [PMID: 34203503 PMCID: PMC8306966 DOI: 10.3390/microorganisms9071398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
In 2018, the incidence of tularemia increased twofold in the west of France, with many pneumonic forms, suggesting environmental sources of infection. We investigated the presence of Francisellatularensis subsp. holarctica and other Francisella species DNA in the natural aquatic environment of this geographic area. Two sampling campaigns, in July 2019 and January 2020, allowed the collection of 87 water samples. Using a combination of real-time PCR assays, we tested the presence of either Francisella sp., F. tularensis/F. novicida, and F. tularensis subsp. holarctica, the latter being the only tularemia agent in Europe. Among 57 water samples of the first campaign, 15 (26.3%) were positive for Francisella sp., nine (15.8%) for F. tularensis and/or F. novicida, and four (7.0%) for F. tularensis subsp. holarctica. Ratios were 25/30 (83.3%), 24/30 (80.0%), and 4/30 (13.3%) for the second campaign. Among the thirty sites sampled during the two campaigns, nine were positive both times for Francisella sp., seven for F. tularensis and/or F. novicida, and one for F. tularensis subsp. holarctica. Altogether, our study reveals a high prevalence of Francisella sp. DNA (including the tularemia agent) in the studied aquatic environment. This aquatic environment could therefore participate in the endemicity of tularemia in the west of France.
Collapse
Affiliation(s)
- Camille D. Brunet
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, TIMC, UMR5525, 38000 Grenoble, France; (C.D.B.); (A.H.); (J.P.); (Y.C.)
| | - Aurélie Hennebique
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, TIMC, UMR5525, 38000 Grenoble, France; (C.D.B.); (A.H.); (J.P.); (Y.C.)
- Centre National de Référence des Francisella, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France;
| | - Julien Peyroux
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, TIMC, UMR5525, 38000 Grenoble, France; (C.D.B.); (A.H.); (J.P.); (Y.C.)
| | - Isabelle Pelloux
- Centre National de Référence des Francisella, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France;
| | - Yvan Caspar
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, TIMC, UMR5525, 38000 Grenoble, France; (C.D.B.); (A.H.); (J.P.); (Y.C.)
- Centre National de Référence des Francisella, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France;
| | - Max Maurin
- Centre National de la Recherche Scientifique, Université Grenoble Alpes, TIMC, UMR5525, 38000 Grenoble, France; (C.D.B.); (A.H.); (J.P.); (Y.C.)
- Centre National de Référence des Francisella, Centre Hospitalier Universitaire Grenoble Alpes, 38000 Grenoble, France;
- Correspondence:
| |
Collapse
|