1
|
López-García E, Romero-Gil V, Arroyo-López FN, Benítez-Cabello A. Impact of lactic acid bacteria inoculation on fungal diversity during Spanish-style green table olive fermentations. Int J Food Microbiol 2024; 417:110689. [PMID: 38621325 DOI: 10.1016/j.ijfoodmicro.2024.110689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
This study delved into the evolution of fungal population during the fermentation of Spanish-style green table olives (Manzanilla cultivar), determining the influence of different factors such as fermentation matrix (brine or fruit) or the use of a lactic acid bacteria inoculum, on its distribution. The samples (n = 24) were directly obtained from industrial fermentation vessels with approximately 10.000 kg of fruits and 6.000 L of brines. Our findings showcased a synchronized uptick in lactic acid bacteria counts alongside fungi proliferation. Metataxonomic analysis of the Internal Transcribed Spacer (ITS) region unearthed noteworthy disparities across different fermentation time points (0, 24, and 83 days). Statistical analysis pinpointed two Amplicon Sequence Variants (ASV), Candida and Aureobasidium, as accountable for the observed variances among the different fermentation time samples. Notably, Candida exhibited a marked increase during 83 days of fermentation, opposite to Aureobasidium, which demonstrated a decline. Fungal biodiversity was slightly higher in brines than in fruits, whilst no effect of inoculation was noticed. At the onset of fermentation, prominently detected genera were also Mycosphaerella (19.82 %) and Apohysomyces (16.31 %), hitherto unreported in the context of table olive processing. However, their prevalence dwindled to nearly negligible levels from 24th day fermentation onwards (<2 %). On the contrary, they were replaced by the fermentative yeasts Saccharomyces and Isstachenkia. Results obtained in this work will be useful for designing new strategies for better control of table olive fermentations.
Collapse
Affiliation(s)
- Elio López-García
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Ctra. Sevilla-Utrera, km 1. Building 46. Campus Universitario Pablo de Olavide, 41013 Seville, Spain
| | - Verónica Romero-Gil
- Department of Food Science and Technology, Agrifood Campus of International Excellence, University of Cordoba, 14014 Córdoba, Spain
| | - Francisco Noé Arroyo-López
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Ctra. Sevilla-Utrera, km 1. Building 46. Campus Universitario Pablo de Olavide, 41013 Seville, Spain
| | - Antonio Benítez-Cabello
- Food Biotechnology Department, Instituto de la Grasa (CSIC), Ctra. Sevilla-Utrera, km 1. Building 46. Campus Universitario Pablo de Olavide, 41013 Seville, Spain.
| |
Collapse
|
2
|
Benítez-Cabello A, Delgado AM, Quintas C. Main Challenges Expected from the Impact of Climate Change on Microbial Biodiversity of Table Olives: Current Status and Trends. Foods 2023; 12:3712. [PMID: 37835365 PMCID: PMC10572816 DOI: 10.3390/foods12193712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Climate change is a global emergency that is affecting agriculture in Mediterranean countries, notably the production and the characteristics of the final products. This is the case of olive cultivars, a source of olive oil and table olives. Table olives are the most important fermented vegetables in the Mediterranean area, whose world production exceeds 3 million tons/year. Lactic acid bacteria and yeast are the main microorganisms responsible for the fermentation of this product. The microbial diversity and population dynamics during the fermentation process are influenced by several factors, such as the content of sugars and phenols, all of which together influence the quality and safety of the table olives. The composition of fruits is in turn influenced by environmental conditions, such as rainfall, temperature, radiation, and the concentration of minerals in the soil, among others. In this review, we discuss the effect of climate change on the microbial diversity of table olives, with special emphasis on Spanish and Portuguese cultivars. The alterations expected to occur in climate change scenario(s) include changes in the microbial populations, their succession, diversity, and growth kinetics, which may impact the safety and quality of the table olives. Mitigation and adaptation measures are proposed to safeguard the authenticity and sensorial features of this valuable fermented food while ensuring food safety requirements.
Collapse
Affiliation(s)
- Antonio Benítez-Cabello
- Instituto de la Grasa (CSIC), Food Biotechnology Department, Campus Universitario Pablo de Olavide, Building 46, Ctra, Sevilla-Utrera, km 1, 41013 Seville, Spain
| | - Amélia M. Delgado
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Célia Quintas
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Instituto Superior de Engenharia, Universidade do Algarve, Campus da Penha, 8005-139 Faro, Portugal
| |
Collapse
|
3
|
Kamilari E, Anagnostopoulos DA, Tsaltas D. Fermented table olives from Cyprus: Microbiota profile of three varieties from different regions through metabarcoding sequencing. Front Microbiol 2023; 13:1101515. [PMID: 36733778 PMCID: PMC9886855 DOI: 10.3389/fmicb.2022.1101515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
The knowledge about the microbial diversity of different olives varieties from diverse regions in the Mediterranean basin is limited. This work aimed to determine the microbial diversity of three different fermented olive varieties, collected from different regions in Cyprus, via Next Generation Sequencing (NGS) analysis. Olives were spontaneously fermented for 120 days, microbial DNA was extracted from the final products, and subjected to 16S rRNA gene and ITS1 loci metabarcoding analysis for the determination of bacterial and fungal communities, respectively. Results revealed that the bacterial profile of the studied varieties was similar, while no noteworthy differences were observed in olives from different regions. The bacterial profile was dominated by the co-existence of Lactobacillus and Streptococcus, while the genera Lactococcus and Salinivibrio and the family Leuconostocaceae were also present in increased relative abundances. Regarding fungal communities, the analysis indicated discrimination among the different varieties, especially in Kalamata ones. The most abundant fungi were mainly the genera Aspergillus, Botryosphaeria, Meyerozyma, and Zygosaccharomyces for Cypriot olives, the genera Botryosphaeria, Saccharomyces, Geosmithia, and Wickeromyces for Kalamata variety, while the dominant fungi in the Picual variety were mainly members of the genera Candida, Penicillium, Saccharomyces, Hanseniospora and Botryosphaeria. Potential microbial biomarkers that distinguish the three varieties are also proposed. Moreover, interaction networks analysis identified interactions among the key taxa of the communities. Overall, the present work provides useful information and sheds light on an understudied field, such as the comparison of microbiota profiles of different varieties from several regions in Cyprus. The study enriches our knowledge and highlights the similarities and the main differences between those aspects, booming in parallel the need for further works on this frontier, in the attempt to determine potentially olives' microbial terroir in Cyprus. Our work should be used as a benchmark for future works in this direction.
Collapse
|
4
|
Benítez-Cabello A, Ramiro-García J, Romero-Gil V, Medina E, Arroyo-López FN. Fungal biodiversity in commercial table olive packages. Food Microbiol 2022; 107:104082. [DOI: 10.1016/j.fm.2022.104082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/19/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
|
5
|
de Castro A, Ruiz-Barba JL, Romero C, Sánchez AH, García P, Brenes M. Formation of gas pocket defect in Spanish-style green olives by the halophile Celerinatantimonas sp. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Tzamourani AP, Kasimati A, Karagianni E, Manthou E, Panagou EZ. Exploring microbial communities of Spanish-style green table olives of Conservolea and Halkidiki cultivars during modified atmosphere packaging in multi-layered pouches through culture-dependent techniques and metataxonomic analysis. Food Microbiol 2022; 107:104063. [DOI: 10.1016/j.fm.2022.104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
|
7
|
Anagnostopoulos DA, Tsaltas D. Current Status, Recent Advances, and Main Challenges on Table Olive Fermentation: The Present Meets the Future. Front Microbiol 2022; 12:797295. [PMID: 35095807 PMCID: PMC8793684 DOI: 10.3389/fmicb.2021.797295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 01/18/2023] Open
Abstract
Table olives are among the most well-known fermented foods, being a vital part of the Mediterranean pyramid diet. They constitute a noteworthy economic factor for the producing countries since both their production and consumption are exponentially increasing year by year, worldwide. Despite its significance, olive’s processing is still craft based, not changed since antiquity, leading to the production of an unstable final product with potential risk concerns, especially related to deterioration. However, based on industrial needs and market demands for reproducible, safe, and healthy products, the modernization of olive fermentation processing is the most important challenge of the current decade. In this sense, the reduction of sodium content and more importantly the use of suitable starter cultures, exhibiting both technological and potential probiotic features, to drive the process may extremely contribute to this need. Prior, to achieve in this effort, the full understanding of table olive microbial ecology during fermentation, including an in-depth determination of microbiota presence and/or dominance and its functionality (genes responsible for metabolite production) that shape the sensorial characteristics of the final product, is a pre-requisite. The advent of meta-omics technology could provide a thorough study of this complex ecosystem, opening in parallel new insights in the field, such as the concept of microbial terroir. Herein, we provide an updated overview in the field of olive fermentation, pointing out some important challenges/perspectives that could be the key to the olive sector’s advancement and modernization.
Collapse
Affiliation(s)
- Dimitrios A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
8
|
Arroyo-López FN, Benítez-Cabello A, Romero-Gil V, Rodríguez-Gómez F, Garrido-Fernández A. Delving into the bacterial diversity of spoiled green Manzanilla Spanish-style table olive fermentations. Int J Food Microbiol 2021; 359:109415. [PMID: 34607034 DOI: 10.1016/j.ijfoodmicro.2021.109415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 11/28/2022]
Abstract
This work applies metataxonomic, standard statistics, and compositional data (CoDa) techniques to study the bacterial diversity of spoiled and normal Spanish-style table olive fermentations, analysing a total of 10-tons of industrial fermentation containers from two processing yards. Forty percent were affected by butyric, sulfidic, or putrid spoilage, while 60% followed the ordinary fermentation course. The samples were obtained at 30 days of fermentation, determining their 16S rRNA gene Amplicon Sequence Variant compositions (ASVs). The butyric containers showed a bacterial profile strongly associated with the genera Enterococcus, Leuconostoc, and Atlantibacter, but also with Lactiplantibacillus and Melissococcus, and less confident to Raoultella, Enterobacter, Serratia, and Celerinatantimonas. The sulfidic fermentation was linked to Alkalibacterium and, to a lesser extent, Marinilactibacillus and the absence of Lactiplantibacillus. Putrid spoilage was mainly related to Halolactibacillus and Alkalibacterium. Sulfidic/putrid (together) differed from butyric spoilage by the presence of Alkalibacterium/Marinilactibacillus as well as by Halomonas/Halanaerobium. Lactiplantibacillus dominated normal fermentations, but Vibrio was also frequently found (0-46%), apparently not causing any alteration. These results contribute to a better microbial characterisation of non-zapatera spoiled table olive fermentations. They also suggest using several statistical techniques to discriminate normal vs spoiled fermentations adequately.
Collapse
Affiliation(s)
- Francisco Noé Arroyo-López
- Instituto de la Grasa (CSIC), Food Biotechnology Department, Campus Universitario Pablo de Olavide, Building 46, Ctra. Sevilla-Utrera, km 1, 41013 Seville, Spain
| | - Antonio Benítez-Cabello
- Instituto de la Grasa (CSIC), Food Biotechnology Department, Campus Universitario Pablo de Olavide, Building 46, Ctra. Sevilla-Utrera, km 1, 41013 Seville, Spain.
| | - Verónica Romero-Gil
- Technological Applications for Improvements of the Quality and Safety in Foods, Avda. Diego Martínez Barrio 10, 2ª Planta, 41013 Seville, Spain
| | - Francisco Rodríguez-Gómez
- Instituto de la Grasa (CSIC), Food Biotechnology Department, Campus Universitario Pablo de Olavide, Building 46, Ctra. Sevilla-Utrera, km 1, 41013 Seville, Spain
| | - Antonio Garrido-Fernández
- Instituto de la Grasa (CSIC), Food Biotechnology Department, Campus Universitario Pablo de Olavide, Building 46, Ctra. Sevilla-Utrera, km 1, 41013 Seville, Spain
| |
Collapse
|
9
|
Sab C, Romero C, Brenes M, Montaño A, Ouelhadj A, Medina E. Industrial Processing of Algerian Table Olive Cultivars Elaborated as Spanish Style. Front Microbiol 2021; 12:729436. [PMID: 34803946 PMCID: PMC8600317 DOI: 10.3389/fmicb.2021.729436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/07/2021] [Indexed: 12/01/2022] Open
Abstract
Olives from the Sigoise, Verdale, and Sevillana cultivars were elaborated as Spanish-style table olives by four Algerian factories, and the quality and food safety of the industrial table olives have been studied by the analysis of physicochemical and microbiological parameters. Differences were observed between the treatments carried out by the different factories throughout the manufacturing process, especially during the washing stage, but no significant differences were found between the analyzed samples for the concentration of sugars and polyphenols. The final pH values reached at the end of fermentation ranged between 5.04 and 4.27, and the titratable acidity was above 0.4% for all samples. Lactic and acetic acids were produced in mean concentrations of 0.68% and 0.21% as a result of lactic acid bacteria (LAB) and yeast metabolism, respectively. However, the presence of butyric, isobutyric, and propionic acids was also detected, and was related to the growth of undesirable spoilage microorganisms, responsible for secondary fermentations. The high-throughput sequencing of bacterial DNA suggested the dominance of LAB species belonging to genera Lactiplantibacillus, Leuconostoc, Pediococcus, Oenococcus, or Enterococcus. The Enterobacteriaceae family was detected during the first days of brining and in only one sample after 120 days of fermentation. Other spoilage microorganisms were found, such as Lentilactobacillus buchneri or the Pectinatus and Acetobacter genera, capable of consuming lactic acid and these played an essential role in the onset of spoilage. The Clostridium and Enterobacter genera, producers of butyric and propionic acids, were responsible for the malodorous fermentation present in the industrial samples that were analyzed. The study concluded that the safety of the table olives analyzed was compromised by the presence of undesirable microorganisms and microbial stability was not guaranteed. The elaboration process can be improved by reducing the washing steps and the time should be reduced to avoid the loss of fermentable matter, with the goal of reaching a pH < 4.0 after the fermentation and preventing the possibility of the growth of spoilage microorganisms and foodborne pathogens.
Collapse
Affiliation(s)
- Chafiaa Sab
- Laboratory of Food Quality and Food Safety, Faculty of Biological and Agricultural Sciences, Mouloud Mammeri University, Tizi Ouzou, Algeria
| | - Concepción Romero
- Food Biotechnology Department, Instituto de la Grasa, IG-CSIC, Seville, Spain
| | - Manuel Brenes
- Food Biotechnology Department, Instituto de la Grasa, IG-CSIC, Seville, Spain
| | - Alfredo Montaño
- Food Biotechnology Department, Instituto de la Grasa, IG-CSIC, Seville, Spain
| | - Akli Ouelhadj
- Laboratory of Food Quality and Food Safety, Faculty of Biological and Agricultural Sciences, Mouloud Mammeri University, Tizi Ouzou, Algeria
| | - Eduardo Medina
- Food Biotechnology Department, Instituto de la Grasa, IG-CSIC, Seville, Spain
| |
Collapse
|