1
|
Hashmi MZ, Mughal AF. Microbial and chemically induced reductive dechlorination of polychlorinated biphenyls in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2167-2181. [PMID: 39762530 DOI: 10.1007/s11356-024-35831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and are emitted during e-waste activities. Once they enter into the environment, PCBs could pose toxic effects to environmental compartments and public health. Reductive dechlorination offers a sustainable solution to manage the PCBs-contaminated environment. Under anaerobic conditions, reductive dechlorination of PCBs occurs, and PCBs congeners serve as potential electron acceptors which stimulate the growth of PCBs-dechlorinating microorganisms. In this review, microbial and chemically induced reductive dechlorination was summarized. During anaerobic conditions, highly chlorinated PCBs undergo reductive dechlorination and are converted into less chlorinated PCBs. The mechanisms involved in reductive dechlorination are mainly attacks on meta and/or para chlorines of PCBs mixtures in a contaminated environment and ortho dechlorination of PCBs. Based on methods, PCBs removal efficiency was as chemical > biological. Activated carbon (90%) showed more treatment efficiency than bacterial (84%). The review suggested that microbial remediation is a slow process; however, efficiency could be enhanced after amendments. Different microorganisms appear to be responsible for different dechlorination activities and the occurrence of various dehalogenation routes. However, PCBs dechlorination rate, extent, and route are influenced by pH, temperature, availability of carbon sources, and the presence or absence of H2 or competing electron acceptors and other electron donors.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Amina F Mughal
- The State University of New York College of Environmental Science and Forestry, Syracuse, USA
| |
Collapse
|
2
|
Yao Z, Zhou X, Jin T, Wang L, Liu N, Wu L. Remediation of phenanthrene contaminated soil by persulphate coupled with Pseudomonas aeruginosa GZ7 based on oxidation prediction model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44415-44430. [PMID: 38954338 DOI: 10.1007/s11356-024-34122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Chemical oxidation coupled with microbial remediation has attracted widespread attention for the removal of polycyclic aromatic hydrocarbons (PAHs). Among them, the precise evaluation of the feasible oxidant concentration of PAH-contaminated soil is the key to achieving the goal of soil functional ecological remediation. In this study, phenanthrene (PHE) was used as the target pollutant, and Fe2+-activated persulphate (PS) was used to remediate four types of soils. Linear regression analysis identified the following important factors influencing remediation: PS dosage and soil PHE content for PHE degradation, Fe2+ dosage, hydrolysable nitrogen (HN), and available phosphorus for PS decomposition. A comprehensive model of "soil characteristics-oxidation conditions-remediation effect" with a high predictive accuracy was constructed. Based on model identification, Pseudomonas aeruginosa GZ7, which had high PAHs degrading ability after domestication, was further applied to coupling repair remediation. The results showed that the optimal PS dose was 0.75% (w/w). The response relationship between soil physical, chemical, and biological indicators at the intermediate interface and oxidation conditions was analysed. Coupled remediation effects were clarified using microbial diversity sequencing. The introduction of Pseudomonas aeruginosa GZ7 stimulated the relative abundance of Cohnella, Enterobacter, Paenibacillus, and Bacillus, which can promote material metabolism and energy transformation during remediation.
Collapse
Affiliation(s)
- Zhenxian Yao
- Institute Name: School of Environment Science and Spatial Informatics, China University of Mining and Technology, No.1, Daxue Road, Xuzhou Jiangsu, 221116, People's Republic of China
| | - Xiangyuan Zhou
- Institute Name: School of Environment Science and Spatial Informatics, China University of Mining and Technology, No.1, Daxue Road, Xuzhou Jiangsu, 221116, People's Republic of China
| | - Tao Jin
- Institute Name: School of Environment Science and Spatial Informatics, China University of Mining and Technology, No.1, Daxue Road, Xuzhou Jiangsu, 221116, People's Republic of China
| | - Liping Wang
- Institute Name: School of Environment Science and Spatial Informatics, China University of Mining and Technology, No.1, Daxue Road, Xuzhou Jiangsu, 221116, People's Republic of China.
| | - Na Liu
- Institute Name: School of Environment Science and Spatial Informatics, China University of Mining and Technology, No.1, Daxue Road, Xuzhou Jiangsu, 221116, People's Republic of China
| | - Lin Wu
- Institute Name: School of Environment Science and Spatial Informatics, China University of Mining and Technology, No.1, Daxue Road, Xuzhou Jiangsu, 221116, People's Republic of China
| |
Collapse
|
3
|
Geris R, Malta M, Soares LA, de Souza Neta LC, Pereira NS, Soares M, Reis VDS, Pereira MDG. A Review about the Mycoremediation of Soil Impacted by War-like Activities: Challenges and Gaps. J Fungi (Basel) 2024; 10:94. [PMID: 38392767 PMCID: PMC10890077 DOI: 10.3390/jof10020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
(1) Background: The frequency and intensity of war-like activities (war, military training, and shooting ranges) worldwide cause soil pollution by metals, metalloids, explosives, radionuclides, and herbicides. Despite this environmentally worrying scenario, soil decontamination in former war zones almost always involves incineration. Nevertheless, this practice is expensive, and its efficiency is suitable only for organic pollutants. Therefore, treating soils polluted by wars requires efficient and economically viable alternatives. In this sense, this manuscript reviews the status and knowledge gaps of mycoremediation. (2) Methods: The literature review consisted of searches on ScienceDirect and Web of Science for articles (1980 to 2023) on the mycoremediation of soils containing pollutants derived from war-like activities. (3) Results: This review highlighted that mycoremediation has many successful applications for removing all pollutants of war-like activities. However, the mycoremediation of soils in former war zones and those impacted by military training and shooting ranges is still very incipient, with most applications emphasizing explosives. (4) Conclusion: The mycoremediation of soils from conflict zones is an entirely open field of research, and the main challenge is to optimize experimental conditions on a field scale.
Collapse
Affiliation(s)
- Regina Geris
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Marcos Malta
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Luar Aguiar Soares
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Lourdes Cardoso de Souza Neta
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Natan Silva Pereira
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Miguel Soares
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Vanessa da Silva Reis
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Madson de Godoi Pereira
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| |
Collapse
|
4
|
Ma X, Ren B, Yu J, Wang J, Bai L, Li J, Li D, Meng M. Changes in grassland soil types lead to different characteristics of bacterial and fungal communities in Northwest Liaoning, China. Front Microbiol 2023; 14:1205574. [PMID: 37448571 PMCID: PMC10336218 DOI: 10.3389/fmicb.2023.1205574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Soil microbial communities are critical in regulating grassland biogeochemical cycles and ecosystem functions, but the mechanisms of how environmental factors affect changes in the structural composition and diversity of soil microbial communities in different grassland soil types is not fully understood in northwest Liaoning, China. Methods We investigated the characteristics and drivers of bacterial and fungal communities in 4 grassland soil types with 11 sites across this region using high-throughput Illumina sequencing. Results and Discussion Actinobacteria and Ascomycota were the dominant phyla of bacterial and fungal communities, respectively, but their relative abundances were not significantly different among different grassland soil types. The abundance, number of OTUs, number of species and diversity of both bacterial and fungal communities in warm and temperate ecotone soil were the highest, while the warm-temperate shrub soil had the lowest microbial diversity. Besides, environmental factors were not significantly correlated with soil bacterial Alpha diversity index. However, there was a highly significant negative correlation between soil pH and Shannon index of fungal communities, and a highly significant positive correlation between plant cover and Chao1 index as well as Observed species of fungal communities. Analysis of similarities showed that the structural composition of microbial communities differed significantly among different grassland soil types. Meanwhile, the microbial community structure of temperate steppe-sandy soil was significantly different from that of other grassland soil types. Redundancy analysis revealed that soil total nitrogen content, pH and conductivity were important influencing factors causing changes in soil bacterial communities, while soil organic carbon, total nitrogen content and conductivity mainly drove the differentiation of soil fungal communities. In addition, the degree of connection in the soil bacterial network of grassland was much higher than that in the fungal network and soil bacterial and fungal communities were inconsistently limited by environmental factors. Our results showed that the microbial community structure, composition and diversity of different grassland soil types in northwest Liaoning differed significantly and were significantly influenced by environmental factors. Microbial community structure and the observation of soil total nitrogen and organic carbon content can predict the health changes of grassland ecosystems to a certain extent.
Collapse
|
5
|
Šrédlová K, Cajthaml T. Recent advances in PCB removal from historically contaminated environmental matrices. CHEMOSPHERE 2022; 287:132096. [PMID: 34523439 DOI: 10.1016/j.chemosphere.2021.132096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Despite being drastically restricted in the 1970s, polychlorinated biphenyls (PCBs) still belong among the most hazardous contaminants. The chemical stability and dielectric properties of PCBs made them suitable for a number of applications, which then lead to their ubiquitous presence in the environment. PCBs are highly bioaccumulative and persistent, and their teratogenic, carcinogenic, and endocrine-disrupting features have been widely reported in the literature. This review discusses recent advances in different techniques and approaches to remediate historically contaminated matrices, which are one of the most problematic in regard to decontamination feasibility and efficiency. The current knowledge published in the literature shows that PCBs are not sufficiently removed from the environment by natural processes, and thus, the suitability of some approaches (e.g., natural attenuation) is limited. Physicochemical processes are still the most effective; however, their extensive use is constrained by their high cost and often their destructiveness toward the matrices. Despite their limited reliability, biological methods and their application in combinations with other techniques could be promising. The literature reviewed in this paper documents that a combination of techniques differing in their principles should be a future research direction. Other aspects discussed in this work include the incompleteness of some studies. More attention should be given to the evaluation of toxicity during these processes, particularly in terms of monitoring different modes of toxic action. In addition, decomposition mechanisms and products need to be sufficiently clarified before combined, tailor-made approaches can be employed.
Collapse
Affiliation(s)
- Kamila Šrédlová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 12801, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
6
|
Marchal C, Germain J, Raveton M, Lyonnard B, Arnoldi C, Binet MN, Mouhamadou B. Molecular Characterization of Fungal Biodiversity in Long-Term Polychlorinated Biphenyl-Contaminated Soils. Microorganisms 2021; 9:microorganisms9102051. [PMID: 34683371 PMCID: PMC8541467 DOI: 10.3390/microorganisms9102051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/05/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) belong to the organic pollutants that are toxic to humans and harmful to environments. Numerous studies dealing with the impact of PCBs on soil microorganisms have focused on bacterial communities. The effects of PCBs on fungal communities in three different PCB-polluted soils from former industrial sites were investigated using high-throughput sequencing of the internal transcribed spacer 1 region. Significant differences in fungal alpha diversity were observed mainly due to soil physico-chemical properties. PCBs only influenced the richness of the fungal communities by increasing it. Fungal composition was rather strongly influenced by both PCBs and soil properties, resulting in different communities associated with each soil. Sixteen Ascomycota species were present in all three soils, including Stachybotrys chartarum, Fusarium oxysporum, Penicillium canescens, Penicillium chrysogenum,Penicillium citrosulfuratum and Penicillium brevicompactum, which are usually found in PCB-polluted soils, and Fusarium solani, Penicillium canescens, Penicillium citrosulfuratum and Penicillium chrysogenum, which are known PCB degraders. This study demonstrated that PCBs influence the richness and the composition of fungal communities. Their influence, associated with that of soil physico-chemical properties, led to distinct fungal communities, but with sixteen species common to the three soils which could be considered as ubiquitous species in PCB-polluted soils.
Collapse
|