1
|
Qin X, Huang J, Liang J, Gong E, Wang W, Lv Y, Hou L, Song J, Sun Y, Wen B, Xu J, Qin T. A novel variant of Chlamydia psittaci causing human psittacosis in China. Int J Infect Dis 2024; 147:107180. [PMID: 39059574 DOI: 10.1016/j.ijid.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
From January 2022 to November 2022, sporadic psittacosis occurred in Lishui city, China. The patients were presented with fever, cough, and pulmonary infiltration. Their clinical symptoms were not relieved after receiving cephalosporin, penicillin, beta-lactamase inhibitors, and quinolones. Metagenomic next-generation sequencing of bronchoalveolar lavage fluid samples from the patients revealed Chlamydia psittaci infection. Then, three C. psittaci strains were isolated from the patients. Their whole genome sequences (WGSs) were obtained, and a core genome multilocus sequence typing (cgMLST) method was developed to study the population structure of C. psittaci. Using the constructed cgMLST method, 72 WGSs were divided into four related groups and ten sub-clusters. The Lishui strains formed a unique population of C. psittaci, which might represent a new variant of C. psittaci. In vitro antimicrobial susceptibility testing suggested that the Lishui strains were sensitive to tetracycline, macrolides, quinolones, and no drug-resistance was observed.
Collapse
Affiliation(s)
- Xincheng Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinwei Huang
- Department of Respiratory and Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Junrong Liang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Enhui Gong
- Department of Respiratory and Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Wen Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuankai Lv
- Department of Respiratory and Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Ling Hou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jingdong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yamin Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Research Institute of Public Health, Nankai University, Tianjin, China
| | - Bohai Wen
- Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianguo Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tian Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
2
|
Vorimore F, Aaziz R, Al Qaysi L, Wernery U, Borel N, Sachse K, Laroucau K. Detection of a novel genotype of Chlamydia buteonis in falcons from the Emirates. Vet Microbiol 2024; 291:110027. [PMID: 38430716 DOI: 10.1016/j.vetmic.2024.110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
Chlamydiaceae are a family of obligate intracellular bacterial pathogens that affect both humans and animals. Recently, a new species named Chlamydia (C.) buteonis was isolated from hawks. In this study, we aimed to investigate the prevalence of Chlamydiaceae in 60 falcons that underwent a routine health check at a specialized clinic in Dubai, United Arab Emirates. Using real-time PCR, we analyzed cloacal and tracheal swabs from these birds and found that 39 of them tested positive for Chlamydiaceae. Subsequent real-time PCR assays specific for C. psittaci, C. abortus, C. avium, and C. gallinacea yielded negative results, while testing positive for C. buteonis. Analysis of ompA and MLST sequences indicated a highly conserved group of strains within this set of samples, but with sequences distinct from the C. buteonis RSHA reference strains and other C. buteonis strains isolated from hawks in the United States. Two strains were further isolated by cell culture and sequenced using whole-genome sequencing, confirming the clustering of these falcon strains within the C. buteonis species, but in a separate clade from the previously identified hawk strains. We also developed a SNP-based PCR-HRM assay to distinguish between these different genotypes. Overall, our findings suggest a high prevalence of C. buteonis in falcons in Dubai and highlight the importance of monitoring this pathogen in birds of prey.
Collapse
Affiliation(s)
- F Vorimore
- Anses, Animal Health Laboratory, Bacterial Zoonoses Unit, Maisons-Alfort, France; Anses, Identhypath, Maisons-Alfort, France
| | - R Aaziz
- Anses, Identhypath, Maisons-Alfort, France
| | - L Al Qaysi
- Lehbab Clinic, Dubai, United Arab Emirates
| | | | - N Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - K Sachse
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University, Jena, Germany
| | - K Laroucau
- Anses, Animal Health Laboratory, Bacterial Zoonoses Unit, Maisons-Alfort, France.
| |
Collapse
|
3
|
Herrmann B, Aaziz R, Kaden R, Riedel HM, Spörndly-Nees E, Sandelin LL, Laroucau K. SNP-based high-resolution typing of Chlamydia psittaci from humans and wild birds in Sweden: circulation of the Mat116 genotype reveals the transmission mode to humans. Microbes Infect 2024; 26:105251. [PMID: 37952689 DOI: 10.1016/j.micinf.2023.105251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/29/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The incidence of Chlamydia psittaci respiratory tract infections in humans has increased in Sweden in recent years. This study aimed to identify the transmission route by genotyping C. psittaci from infected humans and birds. 42 human C. psittaci samples and 5 samples from C. psittaci-infected birds were collected. Genotyping was performed using ompA sequencing, Multi-locus sequence typing, and/or SNP-based high-resolution melting-PCR. Epidemiological data was also collected, and a phylogenetic analysis was conducted. Analysis of ompA provided limited resolution, while the SNP-based PCR analysis successfully detected the Mat116 genotype in 3/5 passerine birds and in 26/29 human cases, indicating a high prevalence of this genotype in the human population. These cases were associated with contact with wild birds, mainly through bird feeding during winter or other outdoor exposure. Human cases caused by other genotypes (psittacine and pigeon) were less common and were linked to exposure to caged birds or pigeons. The SNP-genotype Mat116 is rare, but predominated in this study. The use of SNP-based PCR provided a better understanding of the C. psittaci transmission from birds to humans compared to ompA analysis. In Sweden, human psittacosis appears mainly to be transmitted from garden birds during bird feeding in the winter season.
Collapse
Affiliation(s)
- Björn Herrmann
- Department of Clinical Microbiology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Department of Medical Sciences, Clinical Microbiology, Uppsala University, SE-751 85 Uppsala, Sweden.
| | - Rachid Aaziz
- Anses, Laboratory for Animal Health, Bacterial Zoonosis Unit, Paris-Est University, F-94706 Maisons-Alfort, France
| | - Rene Kaden
- Department of Clinical Microbiology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Science for Life Laboratory, Clinical Genomics Uppsala, SE-751 85 Uppsala, Sweden
| | - Hilde M Riedel
- Department of Clinical Microbiology, Uppsala University Hospital, SE-751 85 Uppsala, Sweden; Department of Medical Sciences, Clinical Microbiology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Ellinor Spörndly-Nees
- Department of Pathology and Wildlife Diseases, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden
| | - Lisa Labbé Sandelin
- Department of Communicable Diseases and Disease Control, Region Kalmar County, SE- 391 26 Kalmar, Sweden; Department of Biology and Environmental Science, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Karine Laroucau
- Anses, Laboratory for Animal Health, Bacterial Zoonosis Unit, Paris-Est University, F-94706 Maisons-Alfort, France
| |
Collapse
|
4
|
Feodorova VA, Zaitsev SS, Lyapina AM, Kichemazova NV, Saltykov YV, Khizhnyakova MA, Evstifeev VV, Larionova OS. Whole genome sequencing characteristics of Chlamydia psittaci caprine AMK-16 strain, a promising killed whole cell veterinary vaccine candidate against chlamydia infection. PLoS One 2023; 18:e0293612. [PMID: 37903115 PMCID: PMC10615304 DOI: 10.1371/journal.pone.0293612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
Chlamydia psittaci is a primary zoonotic pathogen with a broad host range causing severe respiratory and reproductive system infection in animals and humans. To reduce the global burden of C. psittaci-associated diseases on animal welfare and health and to control the pathogen spread in husbandry, effective vaccines based on promising vaccine candidate(s) are required. Recently, the caprine C. psittaci AMK-16 strain (AMK-16) demonstrated a high level of protection (up to 80-100%) in outbred mice and pregnant rabbits immunized with these formaldehyde-inactivated bacteria against experimental chlamydial wild-type infection. This study investigated the molecular characteristics of AMK-16 by whole-genome sequencing followed by molecular typing, phylogenetic analysis and detection of main immunodominant protein(s) eliciting the immune response in mouse model. Similarly to other C. psittaci, AMK-16 harbored an extrachromosomal plasmid. The whole-genome phylogenetic analysis proved that AMK-16 strain belonging to ST28 clustered with only C. psittaci but not with Chlamydia abortus strains. However, AMK-16 possessed the insert which resulted from the recombination event as the additional single chromosome region of a 23,100 bp size with higher homology to C. abortus (98.38-99.94%) rather than to C. psittaci (92.06-92.55%). At least six of 16 CDSs were absent in AMK-16 plasticity zone and 41 CDSs in other loci compared with the reference C. psittaci 6BC strain. Two SNPs identified in the AMK-16 ompA sequence resulted in MOMP polymorphism followed by the formation of a novel genotype/subtype including three other C. psittaci strains else. AMK-16 MOMP provided marked specific cellular and humoral immune response in 100% of mice immunized with the inactivated AMK-16 bacteria. Both DnaK and GrpE encoded by the recombination region genes were less immunoreactive, inducing only a negligible T-cell murine immune response, while homologous antibodies could be detected in 50% and 30% of immunized mice, respectively. Thus, AMK-16 could be a promising vaccine candidate for the development of a killed whole cell vaccine against chlamydiosis in livestock.
Collapse
Affiliation(s)
- Valentina A. Feodorova
- Laboratory for Fundamental and Applied Research, Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Sergey S. Zaitsev
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Anna M. Lyapina
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Natalya V. Kichemazova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Yury V. Saltykov
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Mariya A. Khizhnyakova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| | - Vitaliy V. Evstifeev
- Laboratory of Viral and Chlamydial Infections, Federal Center for Toxicological, Radiation and Biological Safety, Kazan, Russia
- Department of Microbiology, Virology and Immunology, Kazan State Academy of Veterinary Medicine by N.E. Bauman, Kazan City, Russia
| | - Olga S. Larionova
- Laboratory for Fundamental and Applied Research, Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering Named After N.I. Vavilov, Saratov, Russia
| |
Collapse
|
5
|
Kasimov V, White RT, Foxwell J, Jenkins C, Gedye K, Pannekoek Y, Jelocnik M. Whole-genome sequencing of Chlamydia psittaci from Australasian avian hosts: A genomics approach to a pathogen that still ruffles feathers. Microb Genom 2023; 9:mgen001072. [PMID: 37486739 PMCID: PMC10438822 DOI: 10.1099/mgen.0.001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Chlamydia psittaci is a globally distributed veterinary pathogen with zoonotic potential. Although C. psittaci infections have been reported in various hosts, isolation and culture of Chlamydia is challenging, hampering efforts to produce contemporary global C. psittaci genomes. This is particularly evident in the lack of avian C. psittaci genomes from Australia and New Zealand. In this study, we used culture-independent probe-based whole-genome sequencing to expand the global C. psittaci genome catalogue. Here, we provide new C. psittaci genomes from two pigeons, six psittacines, and novel hosts such as the Australian bustard (Ardeotis australis) and sooty shearwater (Ardenna grisea) from Australia and New Zealand. We also evaluated C. psittaci genetic diversity using multilocus sequence typing (MLST) and major outer membrane protein (ompA) genotyping on additional C. psittaci-positive samples from various captive avian hosts and field isolates from Australasia. We showed that the first C. psittaci genomes sequenced from New Zealand parrots and pigeons belong to the clonal sequence type (ST)24 and diverse 'pigeon-type' ST27 clade, respectively. Australian parrot-derived strains also clustered in the ST24 group, whereas the novel ST332 strain from the Australian bustard clustered in a genetically diverse clade of strains from a fulmar, parrot, and livestock. MLST and ompA genotyping revealed ST24/ompA genotype A in wild and captive parrots and a sooty shearwater, whilst 'pigeon-types' (ST27/35 and ompA genotypes B/E) were found in pigeons and other atypical hosts, such as captive parrots, a little blue penguin/Kororā (Eudyptula minor) and a zebra finch (Taeniopygia guttata castanotis) from Australia and New Zealand. This study provides new insights into the global phylogenomic diversity of C. psittaci and further demonstrates the multi-host generalist capacity of this pathogen.
Collapse
Affiliation(s)
- Vasilli Kasimov
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, QLD 4557, Australia
| | - Rhys T. White
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, QLD 4557, Australia
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Brisbane, Queensland 4072, Australia
- The University of Queensland, Australian Centre for Ecogenomics, Brisbane, Queensland 4072, Australia
- Institute of Environmental Science and Research, Wellington, New Zealand
| | - Jonathan Foxwell
- Animal Health Laboratory, Ministry for Primary Industries, 66 Ward Street, Upper Hutt 5018, New Zealand
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Kristene Gedye
- Massey University, School of Veterinary Science, Palmerston North 4442, New Zealand
| | - Yvonne Pannekoek
- University of Amsterdam, Amsterdam UMC, Department of Medical Microbiology and Infection Prevention, Amsterdam 1105, Netherlands
| | - Martina Jelocnik
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, QLD 4557, Australia
| |
Collapse
|
6
|
Sachse K, Hölzer M, Vorimore F, Barf LM, Sachse C, Laroucau K, Marz M, Lamkiewicz K. Genomic analysis of 61 Chlamydia psittaci strains reveals extensive divergence associated with host preference. BMC Genomics 2023; 24:288. [PMID: 37248517 PMCID: PMC10226258 DOI: 10.1186/s12864-023-09370-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Chlamydia (C.) psittaci, the causative agent of avian chlamydiosis and human psittacosis, is a genetically heterogeneous species. Its broad host range includes parrots and many other birds, but occasionally also humans (via zoonotic transmission), ruminants, horses, swine and rodents. To assess whether there are genetic markers associated with host tropism we comparatively analyzed whole-genome sequences of 61 C. psittaci strains, 47 of which carrying a 7.6-kbp plasmid. RESULTS Following clean-up, reassembly and polishing of poorly assembled genomes from public databases, phylogenetic analyses using C. psittaci whole-genome sequence alignment revealed four major clades within this species. Clade 1 represents the most recent lineage comprising 40/61 strains and contains 9/10 of the psittacine strains, including type strain 6BC, and 10/13 of human isolates. Strains from different non-psittacine hosts clustered in Clades 2- 4. We found that clade membership correlates with typing schemes based on SNP types, ompA genotypes, multilocus sequence types as well as plasticity zone (PZ) structure and host preference. Genome analysis also revealed that i) sequence variation in the major outer membrane porin MOMP can result in 3D structural changes of immunogenic domains, ii) past host change of Clade 3 and 4 strains could be associated with loss of MAC/perforin in the PZ, rather than the large cytotoxin, iii) the distinct phylogeny of atypical strains (Clades 3 and 4) is also reflected in their repertoire of inclusion proteins (Inc family) and polymorphic membrane proteins (Pmps). CONCLUSIONS Our study identified a number of genomic features that can be correlated with the phylogeny and host preference of C. psittaci strains. Our data show that intra-species genomic divergence is associated with past host change and includes deletions in the plasticity zone, structural variations in immunogenic domains and distinct repertoires of virulence factors.
Collapse
Affiliation(s)
- Konrad Sachse
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany.
| | - Martin Hölzer
- Methodology and Research Infrastructure, Bioinformatics, Robert Koch Institute, 13353, Berlin, Germany
| | - Fabien Vorimore
- Laboratory for Animal Health, Identypath, ANSES Maisons-Alfort, Paris-Est University, 94706, Paris, France
| | - Lisa-Marie Barf
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre 3 / Structural Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- Institute for Biological Information Processing 6 / Structural Cellular Biology, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Karine Laroucau
- Laboratory for Animal Health, Bacterial Zoonosis Unit, ANSES Maisons-Alfort, Paris-Est University, 94706, Paris, France
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Kevin Lamkiewicz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743, Jena, Germany
- JRG Analytical MicroBioinformatics, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
7
|
Hoon KS, Holt DC, Auburn S, Shaw P, Giffard PM. minSNPs: an R package for the derivation of resolution-optimised SNP sets from microbial genomic data. PeerJ 2023; 11:e15339. [PMID: 37250706 PMCID: PMC10224671 DOI: 10.7717/peerj.15339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
Here, we present the R package, minSNPs. This is a re-development of a previously described Java application named Minimum SNPs. MinSNPs assembles resolution-optimised sets of single nucleotide polymorphisms (SNPs) from sequence alignments such as genome-wide orthologous SNP matrices. MinSNPs can derive sets of SNPs optimised for discriminating any user-defined combination of sequences from all others. Alternatively, SNP sets may be optimised to determine all sequences from all other sequences, i.e., to maximise diversity. MinSNPs encompasses functions that facilitate rapid and flexible SNP mining, and clear and comprehensive presentation of the results. The minSNPs' running time scales in a linear fashion with input data volume and the numbers of SNPs and SNPs sets specified in the output. MinSNPs was tested using a previously reported orthologous SNP matrix of Staphylococcus aureus and an orthologous SNP matrix of 3,279 genomes with 164,335 SNPs assembled from four S. aureus short read genomic data sets. MinSNPs was shown to be effective for deriving discriminatory SNP sets for potential surveillance targets and in identifying SNP sets optimised to discriminate isolates from different clonal complexes. MinSNPs was also tested with a large Plasmodium vivax orthologous SNP matrix. A set of five SNPs was derived that reliably indicated the country of origin within three south-east Asian countries. In summary, we report the capacity to assemble comprehensive SNP matrices that effectively capture microbial genomic diversity, and to rapidly and flexibly mine these entities for optimised marker sets.
Collapse
Affiliation(s)
- Kian Soon Hoon
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Deborah C. Holt
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- CDU Menzies School of Medicine, Faculty of Health, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sarah Auburn
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Peter Shaw
- Oujian Laboratory, Wenzhou, Zhejiang, China
| | - Philip M. Giffard
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- CDU Menzies School of Medicine, Faculty of Health, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
8
|
Luu LDW, Kasimov V, Phillips S, Myers GSA, Jelocnik M. Genome organization and genomics in Chlamydia: whole genome sequencing increases understanding of chlamydial virulence, evolution, and phylogeny. Front Cell Infect Microbiol 2023; 13:1178736. [PMID: 37287464 PMCID: PMC10242142 DOI: 10.3389/fcimb.2023.1178736] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
The genus Chlamydia contains important obligate intracellular bacterial pathogens to humans and animals, including C. trachomatis and C. pneumoniae. Since 1998, when the first Chlamydia genome was published, our understanding of how these microbes interact, evolved and adapted to different intracellular host environments has been transformed due to the expansion of chlamydial genomes. This review explores the current state of knowledge in Chlamydia genomics and how whole genome sequencing has revolutionised our understanding of Chlamydia virulence, evolution, and phylogeny over the past two and a half decades. This review will also highlight developments in multi-omics and other approaches that have complemented whole genome sequencing to advance knowledge of Chlamydia pathogenesis and future directions for chlamydial genomics.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Vasilli Kasimov
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Samuel Phillips
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Garry S. A. Myers
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
9
|
Three Cases of Atypical Pneumonia with Chlamydia psittaci: The Role of Laboratory Vigilance in the Diagnosis of Psittacosis. Pathogens 2022; 12:pathogens12010065. [PMID: 36678414 PMCID: PMC9861199 DOI: 10.3390/pathogens12010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Chlamydia psittaci is an established zoonotic agent causing respiratory disease in humans. An infection often remains asymptomatic but can also result in flu-like illness, pneumonia or even multi-organ failure. This paper describes three patients, hospitalised at AZ Sint-Lucas Hospital, with atypical pneumonia who were diagnosed with C. psittaci after an in-depth anamnesis and laboratory investigation in the midst of the COVID pandemic. All three infections were confirmed with PCR and serology, whereas viable bacteria were only present for one patient. Genotyping revealed the presence of genotype B for patient 1 and 2 whereas ompA genotyping was unsuccessful for patient 3. This case report demonstrates the importance of a thorough patient history as close contact with birds is one of the main risk factors to contract the pathogen. Once exposure to birds has been confirmed, a diagnosis by a combination of PCR and serology is essential in order to initiate a treatment with the proper antibiotics. As psittacosis is still an underestimated and underdiagnosed disease, communication between laboratory, clinicians and bird fanciers is encouraged.
Collapse
|
10
|
White RT, Anstey SI, Kasimov V, Jenkins C, Devlin J, El-Hage C, Pannekoek Y, Legione AR, Jelocnik M. One clone to rule them all: Culture-independent genomics of Chlamydia psittaci from equine and avian hosts in Australia. Microb Genom 2022; 8. [PMID: 36269227 PMCID: PMC9676050 DOI: 10.1099/mgen.0.000888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Chlamydia psittaci is an avian pathogen with zoonotic potential. In Australia, C. psittaci has been well reported as a cause of reproductive loss in mares which subsequently have been the source of infection and illness in some in-contact humans. To date, molecular typing studies describe the predominant and clonal C. psittaci sequence type (ST)24 strains in horse, psittacine, and human infections. We sought to assess the clonality between ST24 strains and the emergence of equine ST24 with a comprehensive genomics approach. We used culture-independent probe-based and metagenomic whole-genome sequencing to investigate 13 C. psittaci genomes from horses, psittacines, and a pigeon from Australia. Published genomes of 36 C. psittaci strains were also used to contextualise our Australian dataset and investigate lineage diversity. We utilised a single-nucleotide polymorphism (SNP) based clustering and multi-locus sequence typing (MLST) approach. C. psittaci has four major phylogenetic groups (PG1-4) based on core-genome SNP-based phylogeny. PG1 contained clonal global and Australian equine, psittacine, and human ST24 genomes, with a median pairwise SNP distance of 68 SNPs. PG2, PG3, and PG4 had greater genomic diversity, including diverse STs collected from birds, livestock, human, and horse hosts from Europe and North America and a racing pigeon from Australia. We show that the clustering of C. psittaci by MLST was congruent with SNP-based phylogeny. The monophyletic ST24 clade has four major sub-lineages. The genomes of 17 Australian human, equine, and psittacine strains collected between 2008 and 2021 formed the predominant ST24 sub-lineage 1 (emerged circa 1979). Despite a temporal distribution of 13 years, the genomes within sub-lineage 1 had a median pairwise SNP distance of 32 SNPs, suggesting a recent population expansion or potential cross-host transmission. However, two C. psittaci genomes collected in 2015 from Victorian parrots clustered into distinct ST24 sub-lineage 4 (emerged circa 1965) with ovine strain C19/98 from Germany. This work describes a comprehensive phylogenomic characterisation of ST24 and identifies a timeline of potential bird-to-equine spillover events.
Collapse
Affiliation(s)
- Rhys T White
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia.,The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Brisbane, Queensland 4072, Australia.,The University of Queensland, Australian Centre for Ecogenomics, Brisbane, Queensland 4072, Australia
| | - Susan I Anstey
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia
| | - Vasilli Kasimov
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales 2568, Australia
| | - Joanne Devlin
- The University of Melbourne, Melbourne Veterinary School, Asia Pacific Centre for Animal Health, Parkville, Victoria 3010, Australia
| | - Charles El-Hage
- The University of Melbourne, Melbourne Veterinary School, Asia Pacific Centre for Animal Health, Parkville, Victoria 3010, Australia
| | - Yvonne Pannekoek
- University of Amsterdam, Amsterdam UMC, Department of Medical Microbiology and Infection Prevention, Amsterdam 1105, The Netherlands
| | - Alistair R Legione
- The University of Melbourne, Melbourne Veterinary School, Asia Pacific Centre for Animal Health, Parkville, Victoria 3010, Australia
| | - Martina Jelocnik
- University of the Sunshine Coast, Centre for Bioinnovation, Sippy Downs, Sunshine Coast, Queensland 4557, Australia
| |
Collapse
|
11
|
Kasimov V, Dong Y, Shao R, Brunton A, Anstey SI, Hall C, Chalmers G, Conroy G, Booth R, Timms P, Jelocnik M. Emerging and well-characterized chlamydial infections detected in a wide range of wild Australian birds. Transbound Emerg Dis 2022; 69:e3154-e3170. [PMID: 35041298 PMCID: PMC9786873 DOI: 10.1111/tbed.14457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/30/2022]
Abstract
Birds can act as successful long-distance vectors and reservoirs for numerous zoonotic bacterial, parasitic and viral pathogens, which can be a concern given the interconnectedness of animal, human and environmental health. Examples of such avian pathogens are members of the genus Chlamydia. Presently, there is a lack of research investigating chlamydial infections in Australian wild and captive birds and the subsequent risks to humans and other animals. In our current study, we investigated the prevalence and genetic diversity of chlamydial organisms infecting wild birds from Queensland and the rate of co-infections with beak and feather disease virus (BFDV). We screened 1114 samples collected from 564 different birds from 16 orders admitted to the Australia Zoo Wildlife Hospital from May 2019 to February 2021 for Chlamydia and BFDV. Utilizing species-specific quantitative polymerase chain reaction (qPCR) assays, we revealed an overall Chlamydiaceae prevalence of 29.26% (165/564; 95% confidence interval (CI) 25.65-33.14), including 3.19% (18/564; 95% CI 2.03-4.99%) prevalence of the zoonotic Chlamydia psittaci. Chlamydiaceae co-infection with BFDV was detected in 9.75% (55/564; 95% CI 7.57-12.48%) of the birds. Molecular characterization of the chlamydial 16S rRNA and ompA genes identified C. psittaci, in addition to novel and other genetically diverse Chlamydia species: avian Chlamydia abortus, Ca. Chlamydia ibidis and Chlamydia pneumoniae, all detected for the first time in Australia within a novel avian host range (crows, figbirds, herons, kookaburras, lapwings and shearwaters). This study shows that C. psittaci and other emerging Chlamydia species are prevalent in a wider range of avian hosts than previously anticipated, potentially increasing the risk of spill-over to Australian wildlife, livestock and humans. Going forward, we need to further characterize C. psittaci and other emerging Chlamydia species to determine their exact genetic identity, potential reservoirs, and factors influencing infection spill-over.
Collapse
Affiliation(s)
- Vasilli Kasimov
- School of ScienceTechnology and EngineeringUniversity of the Sunshine CoastSippy DownsAustralia,Genecology Research CentreUniversity of the Sunshine CoastSippy DownsAustralia
| | - Yalun Dong
- School of ScienceTechnology and EngineeringUniversity of the Sunshine CoastSippy DownsAustralia,Genecology Research CentreUniversity of the Sunshine CoastSippy DownsAustralia
| | - Renfu Shao
- School of ScienceTechnology and EngineeringUniversity of the Sunshine CoastSippy DownsAustralia,Genecology Research CentreUniversity of the Sunshine CoastSippy DownsAustralia
| | - Aaron Brunton
- School of ScienceTechnology and EngineeringUniversity of the Sunshine CoastSippy DownsAustralia,Genecology Research CentreUniversity of the Sunshine CoastSippy DownsAustralia
| | - Susan I. Anstey
- School of ScienceTechnology and EngineeringUniversity of the Sunshine CoastSippy DownsAustralia,Genecology Research CentreUniversity of the Sunshine CoastSippy DownsAustralia
| | - Clancy Hall
- School of ScienceTechnology and EngineeringUniversity of the Sunshine CoastSippy DownsAustralia
| | - Gareth Chalmers
- School of ScienceTechnology and EngineeringUniversity of the Sunshine CoastSippy DownsAustralia
| | - Gabriel Conroy
- School of ScienceTechnology and EngineeringUniversity of the Sunshine CoastSippy DownsAustralia,Genecology Research CentreUniversity of the Sunshine CoastSippy DownsAustralia
| | | | - Peter Timms
- Genecology Research CentreUniversity of the Sunshine CoastSippy DownsAustralia
| | - Martina Jelocnik
- Genecology Research CentreUniversity of the Sunshine CoastSippy DownsAustralia
| |
Collapse
|
12
|
De Meyst A, Aaziz R, Pex J, Braeckman L, Livingstone M, Longbottom D, Laroucau K, Vanrompay D. Prevalence of New and Established Avian Chlamydial Species in Humans and Their Psittacine Pet Birds in Belgium. Microorganisms 2022; 10:microorganisms10091758. [PMID: 36144360 PMCID: PMC9500992 DOI: 10.3390/microorganisms10091758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
The presence and zoonotic transfer of four different avian Chlamydia spp. was assessed in an epidemiological study in a psittacine bird population and its owners. Fecal swabs from 84 pet birds and pharyngeal swabs from 22 bird owners were collected from 21 locations in Flanders. Samples were examined using established and novel PCR platforms combined with culture on PCR-positive samples. Chlamydiaceae DNA was detected in 33 of 84 (39.3%) birds. The predominant part of the avian infections could be attributed to C. psittaci (22 of 84; 26.2%), followed by C. avium (11 of 84; 13.1%). C. gallinacea and C. abortus were not detected in birds or humans. C. psittaci was the only species detected in pet bird owners (4 of 22; 18.2%), stressing its zoonotic importance. This study showed that C. psittaci and the more recently discovered novel avian species C. avium are undoubtedly present in the Flemish psittacine bird population. Our results justify additional research in a larger psittacine bird population and its owners, focusing on C. psittaci and C. avium. In the meantime, increased awareness among pet bird owners and the implementation of preventive measures in the pet bird industry is advised to limit the circulation of established and novel emerging avian chlamydial species.
Collapse
Affiliation(s)
- Anne De Meyst
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-09-264-5972
| | - Rachid Aaziz
- Bacterial Zoonoses Unit, Animal Health Laboratory, Anses, University Paris-Est, 94706 Maisons-Alfort, France
| | - Joachim Pex
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Lutgart Braeckman
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Morag Livingstone
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, UK
| | - David Longbottom
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, UK
| | - Karine Laroucau
- Bacterial Zoonoses Unit, Animal Health Laboratory, Anses, University Paris-Est, 94706 Maisons-Alfort, France
| | - Daisy Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Aaziz R, Laroucau K, Gobbo F, Salvatore D, Schnee C, Terregino C, Lupini C, Di Francesco A. Occurrence of Chlamydiae in Corvids in Northeast Italy. Animals (Basel) 2022; 12:ani12101226. [PMID: 35625072 PMCID: PMC9137748 DOI: 10.3390/ani12101226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The continuous improvement of next-generation sequencing techniques has led to an expansion of the number of Chlamydia species, as well as their host range. Recent studies performed on wild birds have detected Chlamydia strains with characteristics intermediate between Chlamydia psittaci and Chlamydia abortus. In this study, 12/108 corvids tested positive for Chlamydia by real-time PCR. Molecular characterisation at the species level was possible for eight samples, with one positive for C. psittaci and seven for C. abortus. Considering the well-known zoonotic role of C. psittaci and that a potential zoonotic role of avian C. abortus strains cannot be excluded, people who may have professional or other contact with wild birds should take appropriate preventive measures. Abstract Chlamydiaceae occurrence has been largely evaluated in wildlife, showing that wild birds are efficient reservoirs for avian chlamydiosis. In this study, DNA extracted from cloacal swabs of 108 corvids from Northeast Italy was screened for Chlamydiaceae by 23S real-time (rt)PCR. The positive samples were characterised by specific rtPCRs for Chlamydia psittaci, Chlamydia abortus, Chlamydia gallinacea, Chlamydia avium, Chlamydia pecorum and Chlamydia suis. Cloacal shedding of Chlamydiaceae was detected in 12 out of 108 (11.1%, 5.9%–18.6% 95% CI) corvids sampled. Molecular characterisation at the species level was possible in 8/12 samples, showing C. psittaci positivity in only one sample from a hooded crow and C. abortus positivity in seven samples, two from Eurasian magpies and five from hooded crows. Genotyping of the C. psittaci-positive sample was undertaken via PCR/high-resolution melting, clustering it in group III_pigeon, corresponding to the B genotype based on former ompA analysis. For C. abortus genotyping, multilocus sequence typing was successfully performed on the two samples with high DNA load from Eurasian magpies, highlighting 100% identity with the recently reported Polish avian C. abortus genotype 1V strain 15-58d44. To confirm the intermediate characteristics between C. psittaci and C. abortus, both samples, as well as two samples from hooded crows, showed the chlamydial plasmid inherent in most C. psittaci and avian C. abortus, but not in ruminant C. abortus strains. The plasmid sequences were highly similar (≥99%) to those of the Polish avian C. abortus genotype 1V strain 15-58d44. To our knowledge, this is the first report of avian C. abortus strains in Italy, specifically genotype 1V, confirming that they are actively circulating in corvids in the Italian region tested.
Collapse
Affiliation(s)
- Rachid Aaziz
- Bacterial Zoonoses Unit, Animal Health Laboratory, Anses, University Paris-Est, 94700 Maisons-Alfort, France; (R.A.); (K.L.)
| | - Karine Laroucau
- Bacterial Zoonoses Unit, Animal Health Laboratory, Anses, University Paris-Est, 94700 Maisons-Alfort, France; (R.A.); (K.L.)
| | - Federica Gobbo
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (C.T.)
| | - Daniela Salvatore
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (D.S.); (C.L.)
| | - Christiane Schnee
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (Federal Research Institute for Animal Health), D-07743 Jena, Germany;
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (F.G.); (C.T.)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (D.S.); (C.L.)
| | - Antonietta Di Francesco
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy; (D.S.); (C.L.)
- Correspondence:
| |
Collapse
|
14
|
Anstey SI, Kasimov V, Jenkins C, Legione A, Devlin J, Amery-Gale J, Gilkerson J, Hair S, Perkins N, Peel AJ, Borel N, Pannekoek Y, Chaber AL, Woolford L, Timms P, Jelocnik M. Chlamydia Psittaci ST24: Clonal Strains of One Health Importance Dominate in Australian Horse, Bird and Human Infections. Pathogens 2021; 10:pathogens10081015. [PMID: 34451478 PMCID: PMC8401489 DOI: 10.3390/pathogens10081015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
Chlamydia psittaci is traditionally regarded as a globally distributed avian pathogen that can cause zoonotic spill-over. Molecular research has identified an extended global host range and significant genetic diversity. However, Australia has reported a reduced host range (avian, horse, and human) with a dominance of clonal strains, denoted ST24. To better understand the widespread of this strain type in Australia, multilocus sequence typing (MLST) and ompA genotyping were applied on samples from a range of hosts (avian, equine, marsupial, and bovine) from Australia. MLST confirms that clonal ST24 strains dominate infections of Australian psittacine and equine hosts (82/88; 93.18%). However, this study also found novel hosts (Australian white ibis, King parrots, racing pigeon, bovine, and a wallaby) and demonstrated that strain diversity does exist in Australia. The discovery of a C. psittaci novel strain (ST306) in a novel host, the Western brush wallaby, is the first detection in a marsupial. Analysis of the results of this study applied a multidisciplinary approach regarding Chlamydia infections, equine infectious disease, ecology, and One Health. Recommendations include an update for the descriptive framework of C. psittaci disease and cell biology work to inform pathogenicity and complement molecular epidemiology.
Collapse
Affiliation(s)
- Susan I. Anstey
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia; (S.I.A.); (V.K.); (P.T.)
| | - Vasilli Kasimov
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia; (S.I.A.); (V.K.); (P.T.)
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia;
| | - Alistair Legione
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.L.); (J.D.); (J.A.-G.); (J.G.)
| | - Joanne Devlin
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.L.); (J.D.); (J.A.-G.); (J.G.)
| | - Jemima Amery-Gale
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.L.); (J.D.); (J.A.-G.); (J.G.)
| | - James Gilkerson
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia; (A.L.); (J.D.); (J.A.-G.); (J.G.)
| | - Sam Hair
- WA Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia;
| | - Nigel Perkins
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Alison J. Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD 4111, Australia;
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8066 Zurich, Switzerland;
| | - Yvonne Pannekoek
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 3508 Amsterdam, The Netherlands;
| | - Anne-Lise Chaber
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (A.-L.C.); (L.W.)
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia; (A.-L.C.); (L.W.)
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia; (S.I.A.); (V.K.); (P.T.)
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4557, Australia; (S.I.A.); (V.K.); (P.T.)
- Correspondence:
| |
Collapse
|