1
|
Liao K, Chen C, Ye W, Zhu J, Li Y, She S, Wang P, Tao Y, Lv A, Wang X, Chen L. The adaptability, distribution, ecological function and restoration application of biological soil crusts on metal tailings: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172169. [PMID: 38582126 DOI: 10.1016/j.scitotenv.2024.172169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
A large amount of metal tailings causes many environmental issues. Thus, the techniques for their ecological restoration have garnered extensive attention. However, they are still in the exploratory stage. Biological soil crusts (BSCs) are a coherent layer comprising photoautotrophic organisms, heterotrophic organisms and soil particles. They are crucial in global terrestrial ecosystems and play an equal importance in metal tailings. We summarized the existing knowledge on BSCs growing on metal tailings. The main photosynthetic organisms (cyanobacteria, eukaryotic algae, lichens, and mosses) of BSCs exhibit a high heavy metal(loid) (HM) tolerance. BSCs also have a strong adaptability to other adverse conditions in tailings, such as poor structure, acidification, and infertility. The literature about tailing BSCs has been rapidly increasing, particularly after 2022. The extensive literature confirms that the BSCs distributed on metal tailings, including all major types of metal tailings in different climatic regisions, are common. BSCs perform various ecological functions in tailings, including HM stress reduction, soil structure improvement, soil nutrient increase, biogeochemical cycle enhancement, and microbial community restoration. They interact and accelerate revegetation of tailings (at least in the temperate zone) and soil formation. Restoring tailings by accelerating/inducing BSC formation (e.g., resource augmentation and inoculation) has also attracted attention and achieved small-scale on-site application. However, some knowledge gaps still exist. The potential areas for further research include the relation between BSCs and HMs, large-scale quantification of tailing BSCs, application of emerging biological techniques, controlled laboratory experiments, and other restoration applications.
Collapse
Affiliation(s)
- Kejun Liao
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Chaoqi Chen
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Wenyan Ye
- Lin'an Branch of Hangzhou Bureau of Planning and Natural Resources, Hangzhou, Zhejiang, PR China
| | - Jing Zhu
- Lin'an Branch of Hangzhou Bureau of Planning and Natural Resources, Hangzhou, Zhejiang, PR China
| | - Yan Li
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Sijia She
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Panpan Wang
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Yue Tao
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Ang Lv
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Xinyue Wang
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China
| | - Lanzhou Chen
- Wuhan University School of Resource & Environmental Sciences, Wuhan, Hubei, PR China.
| |
Collapse
|
2
|
Ma S, Qiao L, Liu X, Zhang S, Zhang L, Qiu Z, Yu C. Microbial community succession in soils under long-term heavy metal stress from community diversity-structure to KEGG function pathways. ENVIRONMENTAL RESEARCH 2022; 214:113822. [PMID: 35803340 DOI: 10.1016/j.envres.2022.113822] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/04/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Currently, understanding the structure and function of the microbial community is the key step in artificially constructing microbial communities to control soil heavy metal pollution. Abundant/rare microbial communities play different roles in different levels of concentrations. However, the correlation between heavy metals and rare/abundant subgroups is poorly understood. In this study, we used a metagenomics approach to comprehensively investigate the evolutionary changes in microbial diversity, structure, and function under different heavy metal concentration stress in soils surrounding gold tailings. The results show that the main pollutants were Pb, As, and Zn. Indigenous microorganisms have different responses to heavy metal concentrations. Bacteria are the main components of indigenous microorganisms, mainly including Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria. With the increase of heavy metal pollution, the relative abundance of Proteobacteria increased, and that of Actinobacteria decreased. Archaea was significantly inhibited by heavy metal stress and was more sensitive to heavy metal concentration. The response of fungi to heavy metal concentration was not obvious. The results of KEGG pathways showed that carbon fixation was inhibited with increasing heavy metal concentrations, while nitrogen metabolism was in contrast. Abundant subcommunity had a greater correlation mainly with metal resistance mechanisms, and rare subcommunity plays a key role for soil nutrient cycling such as N, S cycling in soils contaminated. Overall, this study provides a comprehensive analysis of the effects of heavy metal stress at different concentrations on microorganisms in farmland around gold tailings and reveals the relationship between heavy metals on KEGG pathways.
Collapse
Affiliation(s)
- Suya Ma
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Longkai Qiao
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Xiaoxia Liu
- Beijing Station of Agro-Environmental Monitoring, Test and Supervision Center of Agro-Environmental Quality, MOA, 100032 Beijing, China
| | - Shuo Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Luying Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Ziliang Qiu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083, Beijing, China.
| |
Collapse
|
3
|
Glaser K, Van AT, Pushkareva E, Barrantes I, Karsten U. Microbial Communities in Biocrusts Are Recruited From the Neighboring Sand at Coastal Dunes Along the Baltic Sea. Front Microbiol 2022; 13:859447. [PMID: 35783389 PMCID: PMC9245595 DOI: 10.3389/fmicb.2022.859447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Biological soil crusts occur worldwide as pioneer communities stabilizing the soil surface. In coastal primary sand dunes, vascular plants cannot sustain due to scarce nutrients and the low-water-holding capacity of the sand sediment. Thus, besides planted dune grass, biocrusts are the only vegetation there. Although biocrusts can reach high coverage rates in coastal sand dunes, studies about their biodiversity are rare. Here, we present a comprehensive overview of the biodiversity of microorganisms in such biocrusts and the neighboring sand from sampling sites along the Baltic Sea coast. The biodiversity of Bacteria, Cyanobacteria, Fungi, and other microbial Eukaryota were assessed using high-throughput sequencing (HTS) with a mixture of universal and group-specific primers. The results showed that the biocrusts recruit their microorganisms mainly from the neighboring sand rather than supporting a universal biocrust microbiome. Although in biocrusts the taxa richness was lower than in sand, five times more co-occurrences were identified using network analysis. This study showed that by comparing neighboring bare surface substrates with biocrusts holds the potential to better understand biocrust development. In addition, the target sequencing approach helps outline potential biotic interactions between different microorganisms groups and identify key players during biocrust development.
Collapse
Affiliation(s)
- Karin Glaser
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- *Correspondence: Karin Glaser
| | - Ahn Tu Van
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Ekaterina Pushkareva
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany
| | - Israel Barrantes
- Research Group Translational Bioinformatics, Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Ulf Karsten
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Optimal K Management Improved Potato Yield and Soil Microbial Community Structure. SUSTAINABILITY 2022. [DOI: 10.3390/su14116579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optimal potassium (K) fertilizer application in potato cropping systems can effectively increase food production and mitigate soil microbial ecosystem stress. The dynamics and sustainability of potato yield, the dynamics of potato commodity rates (CRs), and microbial community structure were explored under four different K application rates (kg K ha−1 year−1): 0 (control), 75 (low K), 150 (medium K), and 225 (high K). Compared with the low-K application, the medium-K and high-K applications increased potato yields by 8.08% and 11.66%, respectively. The mean CR of potato tubers during 4 years was significantly greater under the medium-K treatment than under the low-K and high-K treatments. Both medium-K and high-K applications significantly enhanced the sustainable yield index (SYI) relative to the Low-K application by 7.93% and 9.34%, respectively. Compared with the zero-K, low-K, and high-K treatments, the medium-K treatment improved the total phospholipid fatty acid (PLFA) contents by 11.91%, 16.84%, and 11.66%, respectively. Moreover, the medium-K application increased the bacterial PFLA, actinomycete PFLA, gram-positive (G+) bacterial PFLA, and gram-negative (G−) bacterial PFLA contents in the soil. Overall, application of 150 kg ha−1 year−1 K fertilizer represents a promising fertilization strategy in potato cropping systems in Southwest China.
Collapse
|
5
|
Salty Twins: Salt-Tolerance of Terrestrial Cyanocohniella Strains (Cyanobacteria) and Description of C. rudolphia sp. nov. Point towards a Marine Origin of the Genus and Terrestrial Long Distance Dispersal Patterns. Microorganisms 2022; 10:microorganisms10050968. [PMID: 35630411 PMCID: PMC9144741 DOI: 10.3390/microorganisms10050968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
The ability to adapt to wide ranges of environmental conditions coupled with their long evolution has allowed cyanobacteria to colonize almost every habitat on Earth. Modern taxonomy tries to track not only this diversification process but also to assign individual cyanobacteria to specific niches. It was our aim to work out a potential niche concept for the genus Cyanocohniella in terms of salt tolerance. We used a strain based on the description of C. rudolphia sp. nov. isolated from a potash tailing pile (Germany) and for comparison C. crotaloides that was isolated from sandy beaches (The Netherlands). The taxonomic position of C. rudolphia sp. nov. was evaluated by phylogenetic analysis and morphological descriptions of its life cycle. Salt tolerance of C. rudolphia sp. nov. and C. crotaloides was monitored with cultivation assays in liquid medium and on sand under salt concentrations ranging from 0% to 12% (1500 mM) NaCl. Optimum growth conditions were detected for both strains at 4% (500 mM) NaCl based on morpho-anatomical and physiological criteria such as photosynthetic yield by chlorophyll a fluorescence measurements. Taking into consideration that all known strains of this genus colonize salty habitats supports our assumption that the genus might have a marine origin but also expands colonization to salty terrestrial habitats. This aspect is further discussed, including the ecological and biotechnological relevance of the data presented.
Collapse
|