1
|
Dmitrieva ME, Malygina EV, Belyshenko AY, Shelkovnikova VN, Imidoeva NA, Morgunova MM, Telnova TY, Vlasova AA, Axenov-Gribanov DV. The Effects of a High Concentration of Dissolved Oxygen on Actinobacteria from Lake Baikal. Metabolites 2023; 13:830. [PMID: 37512537 PMCID: PMC10386110 DOI: 10.3390/metabo13070830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Among the diversity of microorganisms, the rarest and least explored are microorganisms that live in conditions of high oxygen in the environment and can experience the effects of natural oxidative stress. Here we suggest that the actinobacteria of Lake Baikal, sampled in the littoral zone, may produce natural products with antioxidant activity. The current study aimed to assess the effects of experimentally increased amounts of oxygen and ozone on the morphology of actinobacteria, DNA mutations, and antioxidant potential. In this experiment, we cultivated actinobacteria in liquid culture under conditions of natural aeration and increased concentrations of dissolved oxygen and ozone. Over a period of three months, bacterial samples were collected every week for further analysis. Morphological changes were assessed using the Gram method. A search for DNA mutations was conducted for the highly conserved 16S rRNA gene. The evaluation of antioxidant activity was performed using the DPPH test. The biotechnological potential was evaluated using high-resolution liquid chromatography-mass spectrometry approaches supplemented with the dereplication of natural products. We demonstrated the synthesis of at least five natural products by the Streptomyces sp. strain only under conditions of increased oxygen and ozone levels. Additionally, we showed morphological changes in Streptomyces sp. and nucleotide mutations in Rhodococcus sp. exposed to increased concentrations of dissolved oxygen and oxidative stress. Consequently, we demonstrated that an increased concentration of oxygen can influence Lake Baikal actinobacteria.
Collapse
Affiliation(s)
- Maria E Dmitrieva
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Ekaterina V Malygina
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Alexander Y Belyshenko
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Victoria N Shelkovnikova
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Natalia A Imidoeva
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Maria M Morgunova
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Tamara Y Telnova
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Anfisa A Vlasova
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| | - Denis V Axenov-Gribanov
- Laboratory of Experimental Neurophysiology, Department for Research and Development, Irkutsk State University, 1 Karl Marx Str., 664003 Irkutsk, Russia
| |
Collapse
|
2
|
He S, Linz AM, Stevens SLR, Tran PQ, Moya-Flores F, Oyserman BO, Dwulit-Smith JR, Forest KT, McMahon KD. Diversity, distribution, and expression of opsin genes in freshwater lakes. Mol Ecol 2023; 32:2798-2817. [PMID: 36799010 DOI: 10.1111/mec.16891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Microbial rhodopsins are widely distributed in aquatic environments and may significantly contribute to phototrophy and energy budgets in global oceans. However, the study of freshwater rhodopsins has been largely limited. Here, we explored the diversity, ecological distribution, and expression of opsin genes that encode the apoproteins of type I rhodopsins in humic and clearwater lakes with contrasting physicochemical and optical characteristics. Using metagenomes and metagenome-assembled genomes, we recovered opsin genes from a wide range of taxa, mostly predicted to encode green light-absorbing proton pumps. Viral opsin and novel bacterial opsin clades were recovered. Opsin genes occurred more frequently in taxa from clearwater than from humic water, and opsins in some taxa have nontypical ion-pumping motifs that might be associated with physicochemical conditions of these two freshwater types. Analyses of the surface layer of 33 freshwater systems revealed an inverse correlation between opsin gene abundance and lake dissolved organic carbon (DOC). In humic water with high terrestrial DOC and light-absorbing humic substances, opsin gene abundance was low and dramatically declined within the first few meters, whereas the abundance remained relatively high along the bulk water column in clearwater lakes with low DOC, suggesting opsin gene distribution is influenced by lake optical properties and DOC. Gene expression analysis confirmed the significance of rhodopsin-based phototrophy in clearwater lakes and revealed different diel expressional patterns among major phyla. Overall, our analyses revealed freshwater opsin diversity, distribution and expression patterns, and suggested the significance of rhodopsin-based phototrophy in freshwater energy budgets, especially in clearwater lakes.
Collapse
Affiliation(s)
- Shaomei He
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexandra M Linz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sarah L R Stevens
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patricia Q Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Francisco Moya-Flores
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ben O Oyserman
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jeffrey R Dwulit-Smith
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Program in Biophysics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Intestinal Microbiota Differences in Litopenaeus vannamei Shrimp between Greenhouse and Aquaponic Rearing. Life (Basel) 2023; 13:life13020525. [PMID: 36836882 PMCID: PMC9965531 DOI: 10.3390/life13020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The sustainability of shrimp aquaculture can be achieved through the development of greenhouse and aquaponic rearing modes, which are classified as heterotrophic and autotrophic bacterial aquaculture systems. However, there have been few investigations into the discrepancies between the intestinal and water microbiota of these two rearing methods. In this study, we collected shrimp samples from greenhouse-rearing (WG) and aquaponic-rearing (YG) ponds, and water samples (WE, YE), and investigated the intestinal and water microbiota between the two rearing modes. The results, through alpha and beta diversity analyses, reveal that there was basically no significant difference between shrimp intestine WG and YG (p > 0.05) or between rearing water WE and YE (p > 0.05). At the phylum and genus levels, the common bacteria between WE and WG differed significantly from those of YE and YG. The analysis of the top six phyla shows that Proteobacteria and Patescibacteria were significantly more abundant in the WG group than those in the YG group (p < 0.05). Conversely, Actinobacteriota, Firmicutes, and Verrucomicrobiota were significantly more abundant in the YG group than those in the WG group (p < 0.05). Venn analysis between WE and WG shows that Amaricoccus, Micrococcales, Flavobacteriaceae, and Paracoccus were the dominant bacteria genera, while Acinetobacter, Demequina, and Rheinheimera were the dominant bacteria genera between YE and YG. Pathways such as the biosynthesis of secondary metabolites, microbial metabolism in different environments, and carbon metabolism were significantly more upregulated in WG than those in YG (p < 0.05). In addition, pathways such as sulfate, chloroplast, phototrophy, and the nitrogen metabolism were significantly different between the WE and YE samples. These findings suggest that the greenhouse mode, a typical heterotrophic bacterial model, contains bacterial flora consisting of Amaricoccus, Micrococcales, Flavobacteriaceae, and other bacteria, which is indicative of the biological sludge process. Conversely, the aquaponic mode, an autotrophic bacterial model, was characterized by Acinetobacter, Demequina, Rheinheimera, and other bacteria, signifying the autotrophic biological process. This research provides an extensive understanding of heterotrophic and autotrophic bacterial aquaculture systems.
Collapse
|
4
|
Villena‐Alemany C, Mujakić I, Porcal P, Koblížek M, Piwosz K. Diversity dynamics of aerobic anoxygenic phototrophic bacteria in a freshwater lake. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:60-71. [PMID: 36507772 PMCID: PMC10103773 DOI: 10.1111/1758-2229.13131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/19/2022] [Indexed: 05/20/2023]
Abstract
Aerobic anoxygenic photoheterotrophic (AAP) bacteria represent a functional group of prokaryotic organisms that harvests light energy using bacteriochlorophyll-containing photosynthetic reaction centers. They represent an active and rapidly growing component of freshwater bacterioplankton, with the highest numbers observed usually in summer. Species diversity of freshwater AAP bacteria has been studied before in lakes, but its seasonal dynamics remain unknown. In this report, we analysed temporal changes in the composition of the phototrophic community in an oligo-mesotrophic freshwater lake using amplicon sequencing of the pufM marker gene. The AAP community was dominated by phototrophic Gammaproteobacteria and Alphaproteobacteria, with smaller contribution of phototrophic Chloroflexota and Gemmatimonadota. Phototrophic Eremiobacteriota or members of Myxococcota were not detected. Interestingly, some AAP taxa, such as Limnohabitans, Rhodoferax, Rhodobacterales or Rhizobiales, were permanently present over the sampling period, while others, such as Sphingomonadales, Rhodospirillales or Caulobacterales appeared only transiently. The environmental factors that best explain the seasonal changes in AAP community were temperature, concentrations of oxygen and dissolved organic matter.
Collapse
Affiliation(s)
- Cristian Villena‐Alemany
- Laboratory of Anoxygenic PhototrophsInstitute of Microbiology of the Czech Academy of SciencesTřeboňCzechia
- Department of Ecosystem Biology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzechia
| | - Izabela Mujakić
- Laboratory of Anoxygenic PhototrophsInstitute of Microbiology of the Czech Academy of SciencesTřeboňCzechia
- Department of Ecosystem Biology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzechia
| | - Petr Porcal
- Department of Ecosystem Biology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzechia
- Department of Hydrochemistry and Ecosystem Modelling, Biology Centre of the Czech Academy of SciencesInstitute of HydrobiologyČeské BudějoviceCzechia
| | - Michal Koblížek
- Laboratory of Anoxygenic PhototrophsInstitute of Microbiology of the Czech Academy of SciencesTřeboňCzechia
- Department of Ecosystem Biology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzechia
| | - Kasia Piwosz
- Department of Fisheries Oceanography and Marine EcologyNational Marine Fisheries Research InstituteGdyniaPoland
| |
Collapse
|
5
|
Shi P, Wang H, Feng M, Cheng H, Yang Q, Yan Y, Xu J, Zhang M. Bacterial Metabolic Potential in Response to Climate Warming Alters the Decomposition Process of Aquatic Plant Litter-In Shallow Lake Mesocosms. Microorganisms 2022; 10:1327. [PMID: 35889044 PMCID: PMC9316218 DOI: 10.3390/microorganisms10071327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
Increased decomposition rates in shallow lakes with global warming might increase the release of atmospheric greenhouse gases, thereby producing positive feedback for global warming. However, how climate warming affects litter decomposition is still unclear in lake ecosystems. Here, we tested the effects of constant and variable warming on the bacterial metabolic potential of typically submerged macrophyte (Potamogeton crispus L.) litters during decomposition in 18 mesocosms (2500 L each). The results showed that warming reduced main chemoheterotrophic metabolic potential but promoted methylotrophy metabolism, which means that further warming may alter methane-cycling microbial metabolism. The nitrate reduction function was inhibited under warming treatments, and nitrogen fixation capability significantly increased under variable warming in summer. The changes in dissolved oxygen (DO), pH, conductivity and ammonium nitrogen driven by warming are the main environmental factors affecting the bacteria's metabolic potential. The effects of warming and environmental factors on fermentation, nitrate reduction and ammonification capabilities in stem and leaf litter were different, and the bacterial potential in the stem litter were more strongly responsive to environmental factors. These findings suggest that warming may considerably alter bacterial metabolic potential in macrophyte litter, contributing to long-term positive feedback between the C and N cycle and climate.
Collapse
Affiliation(s)
- Penglan Shi
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| | - Huan Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China;
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Mingjun Feng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| | - Haowu Cheng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| | - Qian Yang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| | - Yifeng Yan
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Min Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (P.S.); (M.F.); (H.C.); (Q.Y.); (Y.Y.)
| |
Collapse
|
6
|
Soil Bacterial and Fungal Community Responses to Throughfall Reduction in a Eucalyptus Plantation in Southern China. FORESTS 2021. [DOI: 10.3390/f13010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In subtropical plantations in southern China, how soil microbial communities respond to climate change-induced drought is poorly understood. A field experiment was conducted in a subtropical Eucalyptus plantation to determine the impacts of 50% of throughfall reduction (TR) on soil microbial community composition, function, and soil physicochemical properties. Results showed that TR reduced soil water content (SWC) and soil available phosphorus (AP) content. TR significantly altered 196 bacterial operational taxonomic units (OTUs), most of them belonging to Acidobacteria, Actinobacteria, and Proteobacteria, while there were fewer changes in fungal OTUs. At the phylum level, TR increased the relative abundance of Acidobacteria at 0–20 cm soil depth by 37.18%, but failed to influence the relative abundance of the fungal phylum. Notably, TR did not alter the alpha diversity of the bacterial and fungal communities. The redundancy analysis showed that the bacterial communities were significantly correlated with SWC, and fungal communities were significantly correlated with AP content. According to predictions of bacterial and fungal community functions using PICRUSt2 and FUNGuild platforms, TR had different effects on both bacterial and fungal communities. Overall, SWC and AP decreased during TR, resulting in greater changes in soil bacterial community structure, but did not dramatically change soil fungal community structure.
Collapse
|