1
|
Kim YR, Kim GC, Nam SH. Evaluating the Effectiveness of Phellodendron Amurense Ruprecht Extract as a Natural Anti-Caries Material. Pharmaceuticals (Basel) 2024; 17:603. [PMID: 38794173 PMCID: PMC11123985 DOI: 10.3390/ph17050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND This study aimed to investigate the antibacterial and cytotoxic potential of Phellodendron amurense Ruprecht (PAR) extract against Streptococcus mutans (S. mutans) and explore the possibility of using PAR extract as an anticariogenic agent. METHODS Mixed extracts were prepared at 0, 1.25, 2.5, and 5 mg/mL concentrations, and an S. mutans-containing solution of 100 μL was inoculated into the medium. The survival rate of human keratinocyte (HaCaT) cells was assessed to confirm stability. One-way ANOVA was performed to evaluate the antibacterial activity against S. mutans and the proliferation of HaCaT cells. RESULTS Higher concentrations of the PAR extract showed more growth inhibition of S. mutans over time, with the complete inactivation of S. mutans at 5 mg/mL. HaCaT cell density was reduced at a PAR extract concentration of 1.25 mg/mL, but IC50 was not observed, confirming that the concentration used did not affect the cytotoxicity and proliferation. CONCLUSIONS Results showed that the PAR extract was excellent as a natural substance with anticariogenic effects that inhibited the growth of S. mutans and did not affect the cell viability, thus indicating the potential for clinical application.
Collapse
Affiliation(s)
- Yu-Rin Kim
- Department of Dental Hygiene, Silla University, Busan 46958, Republic of Korea;
| | - Gyoo-Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seoul-Hee Nam
- Department of Dental Hygiene, College of Health Science, Kangwon National University, Samcheok 25945, Republic of Korea
| |
Collapse
|
2
|
Singh A, Yadav VK, Gautam H, Rathod L, Chundawat RS, Singh G, Verma RK, Sahoo DK, Patel A. The role of plant growth promoting rhizobacteria in strengthening plant resistance to fluoride toxicity: a review. Front Microbiol 2023; 14:1271034. [PMID: 37901824 PMCID: PMC10603187 DOI: 10.3389/fmicb.2023.1271034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
A wide variety of bacteria are present in soil but in rhizospheric area, the majority of microbes helps plant in defending diseases and facilitate nutrient uptake. These microorganisms are supported by plants and they are known as plant growth-promoting rhizobacteria (PGPR). The PGPRs have the potential to replace chemical fertilizers in a way that is more advantageous for the environment. Fluoride (F) is one of the highly escalating, naturally present contaminants that can be hazardous for PGPRs because of its antibacterial capacity. The interactions of F with different bacterial species in groundwater systems are still not well understood. However, the interaction of PGPR with plants in the rhizosphere region reduces the detrimental effects of pollutants and increases plants' ability to endure abiotic stress. Many studies reveal that PGPRs have developed F defense mechanisms, which include efflux pumps, Intracellular sequestration, enzyme modifications, enhanced DNA repair mechanism, detoxification enzymes, ion transporter/antiporters, F riboswitches, and genetic mutations. These resistance characteristics are frequently discovered by isolating PGPRs from high F-contaminated areas or by exposing cells to fluoride in laboratory conditions. Numerous studies have identified F-resistant microorganisms that possess additional F transporters and duplicates of the well-known targets of F. Plants are prone to F accumulation despite the soil's low F content, which may negatively affect their growth and development. PGPRs can be used as efficient F bioremediators for the soil environment. Environmental biotechnology focuses on creating genetically modified rhizobacteria that can degrade F contaminants over time. The present review focuses on a thorough systemic analysis of contemporary biotechnological techniques, such as gene editing and manipulation methods, for improving plant-microbe interactions for F remediation and suggests the importance of PGPRs in improving soil health and reducing the detrimental effects of F toxicity. The most recent developments in the realm of microbial assistance in the treatment of F-contaminated environments are also highlighted.
Collapse
Affiliation(s)
- Anamika Singh
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Hemant Gautam
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Lokendra Rathod
- ICMR-National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, India
| | - Rajendra Singh Chundawat
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Gulab Singh
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Rakesh Kumar Verma
- School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
3
|
Shen Y, Yu F, Qiu L, Gao M, Xu P, Zhang L, Liao X, Wang M, Hu X, Sun Y, Pan Y. Ecological influence by colonization of fluoride-resistant Streptococcus mutans in oral biofilm. Front Cell Infect Microbiol 2023; 12:1106392. [PMID: 36699726 PMCID: PMC9868560 DOI: 10.3389/fcimb.2022.1106392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023] Open
Abstract
Background Dental caries is one of the oldest and most common infections in humans. Improved oral hygiene practices and the presence of fluoride in dentifrices and mouth rinses have greatly reduced the prevalence of dental caries. However, increased fluoride resistance in microbial communities is concerning. Here, we studied the effect of fluoride-resistant Streptococcus mutans (S. mutans) on oral microbial ecology and compare it with wild-type S. mutans in vitro. Methods Biofilm was evaluated for its polysaccharide content, scanning electron microscopy (SEM) imaging, acid-producing ability, and related lactic dehydrogenase (LDH), arginine deiminase (ADS), and urease enzymatic activity determination. Fluorescence in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (qRT-PCR) were used to evaluate the S. mutans ratio within the biofilm. It was followed by 16S rRNA sequencing to define the oral microbial community. Results Fluoride-resistant S. mutans produced increased polysaccharides in presence of NaF (P < 0.05). The enzymatic activities related to both acid and base generation were less affected by the fluoride. In presence of 275 ppm NaF, the pH in the fluoride-resistant strain sample was lower than the wild type. We observed that with the biofilm development and accumulative fluoride concentration, the fluoride-resistant strain had positive relationships with other bacteria within the oral microbial community, which enhanced its colonization and survival. Compared to the wild type, fluoride-resistant strain significantly increased the diversity and difference of oral microbial community at the initial stage of biofilm formation (4 and 24 h) and at a low fluoride environment (0 and 275 ppm NaF) (P < 0.05). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that fluoride-resistant strain enhanced the metabolic pathways and glucose transfer. Conclusions Fluoride-resistant S. mutans affected the microecological balance of oral biofilm and its cariogenic properties in vitro, indicating its negative impact on fluoride's caries prevention effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Sun
- *Correspondence: Yihuai Pan, ; Yan Sun,
| | | |
Collapse
|
4
|
Moon K, Hwang S, Lee HJ, Jo E, Kim JN, Cha J. Identification of the antibacterial action mechanism of diterpenoids through transcriptome profiling. Front Microbiol 2022; 13:945023. [PMID: 35958135 PMCID: PMC9360744 DOI: 10.3389/fmicb.2022.945023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Effective antibacterial substances of Aralia continentalis have anti-biofilm and bactericidal activity to the oral pathogen Streptococcus mutans. In this study, three compounds extracted from A. continentalis were identified as acanthoic acid, continentalic acid, and kaurenoic acid by NMR and were further investigated how these diterpenoids affect the physiology of the S. mutans. When S. mutans was exposed to individual or mixed fraction of diterpenoids, severe growth defects and unique morphology were observed. The proportion of unsaturated fatty acids in the cell membrane was increased compared to that of saturated fatty acids in the presence of diterpenoids. Genome-wide gene expression profiles with RNA-seq were compared to reveal the mode of action of diterpenoids. Streptococcus mutans commonly enhanced the expression of 176 genes in the presence of the individual diterpenoids, whereas the expression of 232 genes was considerably reduced. The diterpenoid treatment modulated the expression of genes or operon(s) involved in cell membrane synthesis, cell division, and carbohydrate metabolism of S. mutans. Collectively, these findings provide novel insights into the antibacterial effect of diterpenoids to control S. mutans infection, which causes human dental caries.
Collapse
Affiliation(s)
- Keumok Moon
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea
| | - Sungmin Hwang
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Hyeon-Jeong Lee
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - Eunhye Jo
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - Jeong Nam Kim
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, South Korea
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan, South Korea
| | - Jaeho Cha
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea
- Department of Integrated Biological Science, College of Natural Sciences, Pusan National University, Busan, South Korea
- Department of Microbiology, College of Natural Sciences, Pusan National University, Busan, South Korea
| |
Collapse
|
5
|
Heliawati L, Lestari S, Hasanah U, Ajiati D, Kurnia D. Phytochemical Profile of Antibacterial Agents from Red Betel Leaf (Piper crocatum Ruiz and Pav) against Bacteria in Dental Caries. Molecules 2022; 27:molecules27092861. [PMID: 35566225 PMCID: PMC9101570 DOI: 10.3390/molecules27092861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 12/23/2022] Open
Abstract
Based on data from The Global Burden of Disease Study in 2016, dental and oral health problems, especially dental caries, are a disease experienced by almost half of the world’s population (3.58 billion people). One of the main causes of dental caries is the pathogenesis of Streptococcus mutans. Prevention can be achieved by controlling S. mutans using an antibacterial agent. The most commonly used antibacterial for the treatment of dental caries is chlorhexidine. However, long-term use of chlorhexidine has been reported to cause resistance and some side effects. Therefore, the discovery of a natural antibacterial agent is an urgent need. A natural antibacterial agent that can be used are herbal medicines derived from medicinal plants. Piper crocatum Ruiz and Pav has the potential to be used as a natural antibacterial agent for treating dental and oral health problems. Several studies reported that the leaves of P. crocatum Ruiz and Pav contain secondary metabolites such as essential oils, flavonoids, alkaloids, terpenoids, tannins, and phenolic compounds that are active against S. mutans. This review summarizes some information about P. crocatum Ruiz and Pav, various isolation methods, bioactivity, S. mutans bacteria that cause dental caries, biofilm formation mechanism, antibacterial properties, and the antibacterial mechanism of secondary metabolites in P. crocatum Ruiz and Pav.
Collapse
Affiliation(s)
- Leny Heliawati
- Study Program of Chemistry, Faculty of Mathematics and Natural Science, Universitas Pakuan, Bogor 16143, Indonesia; (S.L.); (U.H.)
- Correspondence: ; Tel.: +62-8521-615-0330
| | - Seftiana Lestari
- Study Program of Chemistry, Faculty of Mathematics and Natural Science, Universitas Pakuan, Bogor 16143, Indonesia; (S.L.); (U.H.)
| | - Uswatun Hasanah
- Study Program of Chemistry, Faculty of Mathematics and Natural Science, Universitas Pakuan, Bogor 16143, Indonesia; (S.L.); (U.H.)
| | - Dwipa Ajiati
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.K.)
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.K.)
| |
Collapse
|
6
|
Zhang K, Xiang Y, Peng Y, Tang F, Cao Y, Xing Z, Li Y, Liao X, Sun Y, He Y, Ye Q. Influence of Fluoride-Resistant Streptococcus mutans Within Antagonistic Dual-Species Biofilms Under Fluoride In Vitro. Front Cell Infect Microbiol 2022; 12:801569. [PMID: 35295758 PMCID: PMC8918626 DOI: 10.3389/fcimb.2022.801569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
The widespread application of fluoride, an extremely effective caries prevention agent, induces the generation of fluoride-resistant strains of opportunistic cariogenic bacteria such as fluoride-resistant Streptococcus mutans (S. mutans). However, the influence of this fluoride-resistant strain on oral microecological homeostasis under fluoride remains unknown. In this study, an antagonistic dual-species biofilm model composed of S. mutans and Streptococcus sanguinis (S. sanguinis) was used to investigate the influence of fluoride-resistant S. mutans on dual-species biofilm formation and pre-formed biofilms under fluoride to further elucidate whether fluoride-resistant strains would influence the anti-caries effect of fluoride from the point of biofilm control. The ratio of bacteria within dual-species biofilms was investigated using quantitative real-time PCR and fluorescence in situ hybridization. Cristal violet staining, scanning electron microscopy imaging, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay were used to evaluate biofilm biomass, biofilm structure, and metabolic activity, respectively. Biofilm acidogenicity was determined using lactic acid and pH measurements. The anthrone method and exopolysaccharide (EPS) staining were used to study the EPS production of biofilms. We found that, in biofilm formation, fluoride-resistant S. mutans occupied an overwhelming advantage in dual-species biofilms under fluoride, thus showing more biofilm biomass, more robust biofilm structure, and stronger metabolic activity (except for 0.275 g/L sodium fluoride [NaF]), EPS production, and acidogenicity within dual-species biofilms. However, in pre-formed biofilms, the advantage of fluoride-resistant S. mutans could not be fully highlighted for biofilm formation. Therefore, fluoride-resistant S. mutans could influence the anti-caries effect of fluoride on antagonistic dual-species biofilm formation while being heavily discounted in pre-formed biofilms from the perspective of biofilm control.
Collapse
Affiliation(s)
- Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yangfan Xiang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Youjian Peng
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fengyu Tang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanfan Cao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yejian Li
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiangyan Liao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yan Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yan He
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Qingsong Ye, ; Yan He,
| |
Collapse
|