1
|
Delmoitié B, Sakarika M, Rabaey K, De Wever H, Regueira A. Tailoring non-axenic lactic acid fermentation from cheese whey permeate targeting a flexible lactic acid platform. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 373:123529. [PMID: 39632307 DOI: 10.1016/j.jenvman.2024.123529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Lactic acid (LA) is an important biobased platform chemical, with potential applications in synthetising a wide range of chemical products or serving as feedstock for various bioprocesses. Industrial LA production via pure culture fermentation is characterized by high operational costs and utilizes food-grade sugars, thereby reducing the feasibility of LA applications. In this context, our research focussed on valorising the largest dairy side stream, cheese whey permeate, through the use of mixed microbial communities. We evaluated the effect of different operational parameters (temperature, pH and hydraulic retention time) in non-axenic fermentations on productivity, yield, concentration, optical purity, and community. Our findings revealed that operating at mildly thermophilic conditions (45 °C) resulted in highly selective LA production, and significantly augmented the LA yield, and productivity, compared to higher temperatures (50-55 °C). In addition, operating at circumneutral pH conditions (6.0-6.5) led to significantly increased the LA fermentation performance compared to the conventional acid pH conditions (≤5.5). This led to an unprecedented LA productivity of 27.4 g/L/h with a LA yield of 70.0% which is 2.5 times higher compared to previous reported maximum. Additionally, varying pH levels influenced the optical purity of LA: we achieved an optical L-LA purity of 98.3% at pH 6.0-6.5, and an optical D-LA purity of 91.3% at a pH of 5.5. A short hydraulic retention time of less than 12 h was crucial for selective LA production. This process also yielded a microbial biomass composed of 90.3-98.6% Lactobacillus delbrueckii, which could be potentially valorised as probiotic or protein ingredient in food or feed products. Our work shows that by careful selection of operational conditions, the overall performance can be significantly increased compared to the state-of-the-art. These results highlight the potential of non-sterile LA fermentation and show that careful selection of simple reactor operation parameters can maximize process performance. A preliminary assessment suggests that valorising EU cheese whey permeate could increase LA and poly-LA production by 40 and 125 times, respectively. This could also lead to the production of 4,000 kton protein-rich biomass, potentially reducing CO2 emissions linked to EU food and feed production by 4.87% or 2.77% respectively.
Collapse
Affiliation(s)
- Brecht Delmoitié
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium
| | - Myrsini Sakarika
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium
| | - Korneel Rabaey
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium; Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Heleen De Wever
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium; Flemish Institute for Technological Research, (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Alberte Regueira
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9052, Ghent, Belgium; CRETUS, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15075 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Al Zahrani AJ, Shori AB, Al-Judaibi E. Fermented Soymilk with Probiotic Lactobacilli and Bifidobacterium Strains Ameliorates Dextran-Sulfate-Sodium-Induced Colitis in Rats. Nutrients 2024; 16:3478. [PMID: 39458472 PMCID: PMC11510403 DOI: 10.3390/nu16203478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Current treatments for inflammatory bowel disease (IBD) are relatively futile and the extended use of drugs may reduce effectiveness. Several probiotic strains have shown promise in relieving/treating IBD symptoms. Objectives: The current study investigated the impact of fermented soymilk with a mixture of probiotic starter cultures containing Lactobacillus rhamnosus, L. casei, L. plantarum, L. acidophilus, Bifidobacterium longum, and B. animalis subsp. lactis in rats with dextran sulfate sodium (DSS)-induced colitis compared to control. Methods: Rats were randomly assigned to five groups (5 rats/group; n = 25): G1: negative normal control; G2: positive control (DSS); G3: DSS with sulfasalazine (DSS-Z); G4: DSS with soymilk (DSS-SM), and G5: DSS with fermented soymilk (DSS-FSM). Parameters monitored included the following: the disease activity index (DAI), macroscopic and histological assessments of colitis, and a fecal microbial analysis performed to assess the severity of inflammation and ulceration. Results: The DSS-FSM rats group exhibited lower DAI scores (p < 0.05) than other treated groups during the induction period. A macroscopical examination revealed no ulceration or swelling in the intestinal mucosa of rats in the DSS-FSM-treated group, resembling the findings in the negative control group. In the positive control (DSS group), the colon tissue showed increased inflammation (p < 0.05), whereas those in the DSS-SM- and DSS-FSM-treated rats groups did not show significant macroscopic scores of colitis. The positive DSS control and DSS-Z groups had crypt erosion and ulceration areas, severe crypt damage, and epithelial surface erosion, which were absent in the negative control and DSS-FSM groups. The counts of Lactobacillus spp. and Bifidobacterium spp. remained stable in both G1 and G5 over 4 weeks. The consumption of fermented soymilk with a mixture of probiotics could minimize the severity of DSS-induced colitis in rats. Conclusion, it was found that fermented soymilk containing Lactobacilli and Bifidobacterium might be an effective vehicle for reducing the severity of DSS-induced colitis in rats.
Collapse
Affiliation(s)
- Ashwag Jaman Al Zahrani
- Faculty of Science, Department of Biological Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Amal Bakr Shori
- Faculty of Science, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Effat Al-Judaibi
- Faculty of Science, Department of Biological Sciences, University of Jeddah, Jeddah 21959, Saudi Arabia
| |
Collapse
|
3
|
Salahi A, Abd El-Ghany WA. Beyond probiotics, uses of their next-generation for poultry and humans: A review. J Anim Physiol Anim Nutr (Berl) 2024; 108:1336-1347. [PMID: 38689488 DOI: 10.1111/jpn.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
The production of healthy food is one of the basic requirements and challenges. Research efforts have been introduced in the human's food industry to reduce the microbial resistance and use safe and healthy alternatives with a high durability. However, the conducted work about these issues in the field of livestock animal production have been started since 2015. Inappropriate and extensive use of antibiotics has resulted in the increase of antimicrobial resistance, presence of drug residues in tissues, and destruction of the gut microbiome. Therefore, discovering and developing antibiotic substitutes were urgent demands. Probiotic compounds containing living micro-organisms are important antibiotic alternative that have been beneficially and extensively used in humans, animals, and poultry. However, some probiotics show some obstacles during production and applications. Accordingly, this review article proposes a comprehensive description of the next-generation of probiotics including postbiotics, proteobiotics, psychobiotics, immunobiotics and paraprobiotics and their effects on poultry production and human's therapy. These compounds proved great efficiency in terms of restoring gut health, improving performance and general health conditions, modulating the immune response and reducing the pathogenic micro-organisms. However, more future research work should be carried out regarding this issue.
Collapse
Affiliation(s)
- Ahmad Salahi
- Department of Animal Science, Faculty of Agriculture, Zanjan University, Zanjan, Iran
| | - Wafaa A Abd El-Ghany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Liu C, Ma N, Feng Y, Zhou M, Li H, Zhang X, Ma X. From probiotics to postbiotics: Concepts and applications. ANIMAL RESEARCH AND ONE HEALTH 2023; 1:92-114. [DOI: 10.1002/aro2.7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/24/2023] [Indexed: 01/05/2025]
Abstract
AbstractIn recent years, the important role of gut microbiota in promoting animal health and regulating immune function in livestock and poultry has been widely reported. The issue of animal health problems causes significant economic losses each year. Probiotics and postbiotics have been widely developed as additives due to their beneficial effects in balancing host gut microbiota, enhancing intestinal epithelial barrier, regulating immunity, and whole‐body metabolism. Probiotics and postbiotics are composed of complex ingredients, with different components and compositions having different effects, requiring classification for discussing their mechanisms of action. Probiotics and postbiotics have considerable prospects in preventing various diseases in the livestock industry and animal feed and medical applications. This review highlights the application value of probiotics and postbiotics as potential probiotic products, emphasizing their concept, mechanism of action, and application, to improve the productivity of livestock and poultry.
Collapse
Affiliation(s)
- Chunchen Liu
- College of Public Health North China University of Science and Technology Qinhuangdao Hebei China
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Yue Feng
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Min Zhou
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| | - Huahui Li
- College of Public Health North China University of Science and Technology Qinhuangdao Hebei China
| | - Xiujun Zhang
- College of Public Health North China University of Science and Technology Qinhuangdao Hebei China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University Beijing China
| |
Collapse
|
5
|
Ali MS, Lee EB, Hsu WH, Suk K, Sayem SAJ, Ullah HMA, Lee SJ, Park SC. Probiotics and Postbiotics as an Alternative to Antibiotics: An Emphasis on Pigs. Pathogens 2023; 12:874. [PMID: 37513721 PMCID: PMC10383198 DOI: 10.3390/pathogens12070874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Probiotics are being used as feed/food supplements as an alternative to antibiotics. It has been demonstrated that probiotics provide several health benefits, including preventing diarrhea, irritable bowel syndrome, and immunomodulation. Alongside probiotic bacteria-fermented foods, the different structural components, such as lipoteichoic acids, teichoic acids, peptidoglycans, and surface-layer proteins, offer several advantages. Probiotics can produce different antimicrobial components, enzymes, peptides, vitamins, and exopolysaccharides. Besides live probiotics, there has been growing interest in consuming inactivated probiotics in farm animals, including pigs. Several reports have shown that live and killed probiotics can boost immunity, modulate intestinal microbiota, improve feed efficiency and growth performance, and decrease the incidence of diarrhea, positioning them as an interesting strategy as a potential feed supplement for pigs. Therefore, effective selection and approach to the use of probiotics might provide essential features of using probiotics as an important functional feed for pigs. This review aimed to systematically investigate the potential effects of lactic acid bacteria in their live and inactivated forms on pigs.
Collapse
Affiliation(s)
- Md Sekendar Ali
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Walter H Hsu
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50014, USA
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Syed Al Jawad Sayem
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - H M Arif Ullah
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Seung-Jin Lee
- Development and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Kim E, Lee GY, Yang SM, Kim HY. Rapid and accurate on-site identification of Lactobacillus delbrueckii subspecies in dairy products using direct polymerase chain reaction with microfluidic chip. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
7
|
Jiang D, Yang M, Xu J, Deng L, Hu C, Zhang L, Sun Y, Jiang J, Lu L. Three-stage fermentation of the feed and the application on weaned piglets. Front Vet Sci 2023; 10:1123563. [PMID: 36876012 PMCID: PMC9978217 DOI: 10.3389/fvets.2023.1123563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Numerous studies have demonstrated that soybean meal (SBM) contains high levels of anti-nutritional factors, which interrupt gastrointestinal homeostasis or metabolism normally of the weaned piglets. Here, the mixed probiotics, including Bacillus licheniformis (B. licheniformis, CGMCC 8147), Saccharomyces cerevisiae H11 (S. cerevisiae H11) and Lactobacillus casei (L. casei, CGMCC 8149) were applied to the three-stage fermentation of functional feed. Our research investigated the optimum ratio of inoculation, optimal time of inoculation, combination of substrates, and nutritional value of the fermented feed. The optimal microbial combination was B. licheniformis: S. cerevisiae: L. casei = 2:2:1, inoculating at 0, 12 and 24 h, respectively. The results revealed that crude protein and acid-soluble protein were remarkably improved and had lower pH. Trypsin inhibitor, glycine and β-glycine were reduced by 79.86, 77.18, and 69.29%, respectively. Moreover, animal trials further evaluated the growth-promoting effects of the fermented feed. It was noted that the average daily gain of weaned piglets was significantly higher, and the ratio of feed with weight, diarrhea incidence and mortality were lower significantly. The concentrations of serum immunoglobulin G(IgG), IgA, IgM, Complement C3 and interferon-γ (IFN-γ), and lysozyme activity were all increased. The relative abundance of fecal microbiota improved, especially lactobacillus, which increased the abundance of fecal dominant probiotics. Overall, the fermented feed may be conducive to the growth and health of weaned piglets by improving nutritional value, immunity properties, relative abundance of fecal microflora, and decreasing anti-nutritional factors of feed, thereby making them viable and usable feedstuffs for potential use in livestock industries.
Collapse
Affiliation(s)
- Dahai Jiang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, China.,College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Manqi Yang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, China.,College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Jun Xu
- Zhangzhou DaBeiNong Agriculture and Husbandry Science & Technology Co., Ltd., Zhangzhou, China
| | - Liping Deng
- Jiangxi DaBeiNong Technology Co., Ltd., Nanchang, China
| | - Cong Hu
- Beijing DaBeiNong Technology Group Co., Ltd., Beijing, China
| | - Liangliang Zhang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, China.,College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Yunzhang Sun
- The Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, China
| | - Jianchun Jiang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, China.,College of Chemical Engineering, Huaqiao University, Xiamen, China.,Institute of Chemical Industry of Forest Products, CAF, Nanjing, China
| | - Liming Lu
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen, China.,College of Chemical Engineering, Huaqiao University, Xiamen, China
| |
Collapse
|
8
|
Illikoud N, Mantel M, Rolli-Derkinderen M, Gagnaire V, Jan G. Dairy starters and fermented dairy products modulate gut mucosal immunity. Immunol Lett 2022; 251-252:91-102. [DOI: 10.1016/j.imlet.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
|
9
|
Zhang Y, Wang C, Su W, Jiang Z, He H, Gong T, Kai L, Xu H, Wang Y, Lu Z. Co-fermented yellow wine lees by Bacillus subtilis and Enterococcus faecium regulates growth performance and gut microbiota in finishing pigs. Front Microbiol 2022; 13:1003498. [PMID: 36338073 PMCID: PMC9633856 DOI: 10.3389/fmicb.2022.1003498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/23/2022] [Indexed: 10/05/2023] Open
Abstract
Fermented yellow wine lees (FYWL) are widely used to increase feed utilization and improve pig performance. Based on the preparation of co-FYWL using Bacillus subtilis and Enterococcus faecalis, the purpose of this study was to investigate the effects of co-FYWL on growth performance, gut microbiota, meat quality, and immune status of finishing pigs. 75 pigs were randomized to 3 treatments (5 replicates/treatment), basal diet (Control), a basal diet supplemented with 4%FYWL, and a basal diet supplemented with 8%FYWL, for 50 days each. Results showed that the 8% FYWL group significantly reduced the F/G and increased the average daily weight gain of pigs compared to the control group. In addition, 8% FYWL improved the richness of Lactobacillus and B. subtilis in the gut, which correlated with growth performance, serum immune parameters, and meat quality. Furthermore, acetate and butyrate in the feces were improved in the FYWL group. Simultaneously, FYWL improved the volatile flavor substances of meat, increased the content of flavor amino acids, and played a positive role in the palatability of meat. In addition, FYWL increased serum IgA, IgM, IL-4 and IL-10 levels. Overall, the growth performance, the gut microbiota associated with fiber degradation, meat quality, and immune status were improved in the 8% FYWL group.
Collapse
Affiliation(s)
- Yu Zhang
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng Wang
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weifa Su
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zipeng Jiang
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huan He
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Gong
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lixia Kai
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huangen Xu
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yizhen Wang
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zeqing Lu
- National Engineering Research Center for Green Feed and Healthy Breeding, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Taranu I, Marin D, Pistol G, Untea A, Vlassa M, Filip M, Gras M, Rotar C, Anghel A. Assessment of the ability of dietary yeast-fermented rapeseed
meal to modulate inflammatory and oxidative stress
in piglets after weaning. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/148055/2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Kober AKMH, Riaz Rajoka MS, Mehwish HM, Villena J, Kitazawa H. Immunomodulation Potential of Probiotics: A Novel Strategy for Improving Livestock Health, Immunity, and Productivity. Microorganisms 2022; 10:microorganisms10020388. [PMID: 35208843 PMCID: PMC8878146 DOI: 10.3390/microorganisms10020388] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the use of probiotics as feed supplements in animal production has increased considerably due to the ban on antibiotic growth promoters in livestock. This review provides an overview of the current situation, limitation, and prospects for probiotic formulations applied to livestock. Recently, the use of probiotics in livestock has been suggested to significantly improve their health, immunity, growth performance, nutritional digestibility, and intestinal microbial balance. Furthermore, it was reported that the use of probiotics in animals was helpful in equilibrating their beneficial microbial population and microbial turnover via stimulating the host immune response through specific secretions and competitive exclusion of potentially pathogenic bacteria in the digestive tract. Recently, there has been great interest in the understanding of probiotics targeted diet and its ability to compete with harmful microbes and acquire their niches. Therefore, the present review explores the most commonly used probiotic formulations in livestock feed and their effect on animal health. In summary, this article provides an in-depth knowledge about the formulation of probiotics as a step toward a better alternative to antibiotic healthy growth strategies.
Collapse
Affiliation(s)
- A. K. M. Humayun Kober
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.R.R.); (H.M.M.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
- Correspondence: or (A.K.M.H.K.); (H.K.); Tel.: +880-1712-164794 (A.K.M.H.K.); +81-22-757-4372 (H.K.)
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.R.R.); (H.M.M.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Hafiza Mahreen Mehwish
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.R.R.); (H.M.M.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina;
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan; (M.S.R.R.); (H.M.M.)
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Correspondence: or (A.K.M.H.K.); (H.K.); Tel.: +880-1712-164794 (A.K.M.H.K.); +81-22-757-4372 (H.K.)
| |
Collapse
|
12
|
Zamojska D, Nowak A, Nowak I, Macierzyńska-Piotrowska E. Probiotics and Postbiotics as Substitutes of Antibiotics in Farm Animals: A Review. Animals (Basel) 2021; 11:ani11123431. [PMID: 34944208 PMCID: PMC8697875 DOI: 10.3390/ani11123431] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Breeders are searching for methods to protect farming animals against diseases caused by pathogenic bacteria. The easiest way to fight bacteria is to use antibiotics. Unfortunately, their abuse results in the presence of bacteria resistant to the most commonly used antibiotics in the environment. The restrictions on the use of antibiotics have forced the search for natural and safe ways to protect animals. It has been shown that the use of probiotics based on lactic acid bacteria may have a positive effect on the growth and use of feed by broilers, on the stabilization of the intestinal microbiota of chickens and pigs, and in the prevention of mastitis in dairy cows. The use of probiotics (live, nonpathogenic microorganisms) and postbiotics (inanimate bacteria, cell components or post-fermentation by-products) reduces the occurrence of pathogens in large-scale farms. Abstract Since 2006, the use of growth-promoting antibiotics has been banned throughout the European Union. To meet the expectations of livestock farmers, various studies have been carried out with the use of lactic acid bacteria. Scientists are trying to obtain the antimicrobial effect against the most common pathogens in large-scale farms. Supplementing the diet of broilers with probiotics (live, nonpathogenic microorganisms) stabilized the intestinal microbiota, which improved the results of body weight gain (BWG) and feed intake (FI). The positive effect of probiotics based on lactic acid bacteria has been shown to prevent the occurrence of diarrhea during piglet weaning. The antagonistic activity of postbiotics (inanimate bacteria, cell components, or post-fermentation by-products) from post-culture media after lactobacilli cultures has been proven on Staphylococcus aureus—the pathogen most often responsible for causing mastitis among dairy cows. The article aims to present the latest research examining the antagonistic effect of lactic acid bacteria on the most common pathogens in broilers, piglets, pigs, and cow farms.
Collapse
Affiliation(s)
- Daria Zamojska
- Polwet-Centrowet Sp. z o.o., M. Konopnickiej 21, 98-100 Lask, Poland;
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (D.Z.); (A.N.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (D.Z.); (A.N.)
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Kopcinskiego 8/12, 90-232 Lodz, Poland;
| | | |
Collapse
|
13
|
Effects of Partially Hydrolyzed Guar Gum Supplementation on the Fecal Microbiotas of Piglets. Pathogens 2021; 10:pathogens10111420. [PMID: 34832576 PMCID: PMC8619618 DOI: 10.3390/pathogens10111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Probiotics and prebiotics have become viable alternatives of growth-promoting antimicrobials in animal production. Here, we tested partially hydrolyzed guar gum (PHGG) as a possible prebiotic for piglets in the commercial farm. Five hundred and ninety-four piglets were used for the experiments, with 293 given a normal pig feed (control), while the rest the feed plus 0.06% (w/w) of PHGG (PHGG). One and three months post-PHGG supplementation, fecal samples were collected from randomly selected 20 piglets in each group and analyzed for microbiota and organic acid concentrations. Notably, the abundance of Streptococcus, and unclassified Ruminococcaceae were lower (p < 0.05) in PHGG than in control, one-month post-supplementation. Lactobacillus and Prevotella were higher (p < 0.05), while Streptococcus was lower (p < 0.05), in PHGG than in control, three months post-supplementation. The concentrations of acetate, propionate, and butyrate were greater in PHGG than in control, three months post-supplementation. Finally, PHGG grew faster and had fewer deaths until slaughter time (p < 0.05), than control. We concluded that PHGG not only was an effective prebiotic to alter gut microbiota of weanling piglets but also can possibly promote body weight accretion and health.
Collapse
|