1
|
Nicolao MC, Rodrigues CR, Coccimiglio MB, Ledo C, Docena GH, Cumino AC. Characterization of protein cargo of Echinococcus granulosus extracellular vesicles in drug response and its influence on immune response. Parasit Vectors 2023; 16:255. [PMID: 37516852 PMCID: PMC10387209 DOI: 10.1186/s13071-023-05854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND The Echinococcus granulosus sensu lato species complex causes cystic echinococcosis, a zoonotic disease of medical importance. Parasite-derived small extracellular vesicles (sEVs) are involved in the interaction with hosts intervening in signal transduction related to parasite proliferation and disease pathogenesis. Although the characteristics of sEVs from E. granulosus protoscoleces and their interaction with host dendritic cells (DCs) have been described, the effect of sEVs recovered during parasite pharmacological treatment on the immune response remains unexplored. METHODS Here, we isolated and characterized sEVs from control and drug-treated protoscoleces by ultracentrifugation, transmission electron microscopy, dynamic light scattering, and proteomic analysis. In addition, we evaluated the cytokine response profile induced in murine bone marrow-derived dendritic cells (BMDCs) by qPCR. RESULTS The isolated sEVs, with conventional size between 50 and 200 nm, regardless of drug treatment, showed more than 500 cargo proteins and, importantly, 20 known antigens and 70 potential antigenic proteins, and several integral-transmembrane and soluble proteins mainly associated with signal transduction, immunomodulation, scaffolding factors, extracellular matrix-anchoring, and lipid transport. The identity and abundance of proteins in the sEV-cargo from metformin- and albendazole sulfoxide (ABZSO)-treated parasites were determined by proteomic analysis, detecting 107 and eight exclusive proteins, respectively, which include proteins related to the mechanisms of drug action. We also determined that the interaction of murine BMDCs with sEVs derived from control parasites and those treated with ABZSO and metformin increased the expression of pro-inflammatory cytokines such as IL-12 compared to control cells. Additionally, protoscolex-derived vesicles from metformin treatments induced the production of IL-6, TNF-α, and IL-10. However, the expression of IL-23 and TGF-β was downregulated. CONCLUSIONS We demonstrated that sEV-cargo derived from drug-treated E. granulosus protoscoleces have immunomodulatory functions, as they enhance DC activation towards a type 1 pro-inflammatory profile against the parasite, and therefore support the proposal of a new approach for the prevention and treatment of secondary echinococcosis.
Collapse
Affiliation(s)
- María Celeste Nicolao
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Christian Rodriguez Rodrigues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, 7600, Mar del Plata, Argentina
| | - Magalí B Coccimiglio
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina
| | - Camila Ledo
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina
| | - Guillermo H Docena
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), La Plata, Argentina
| | - Andrea C Cumino
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, 7600, Mar del Plata, Argentina.
| |
Collapse
|
2
|
Wang L, Wang Y, Cui Z, Li D, Li X, Zhang S, Zhang L. Enrichment and proteomic identification of Cryptosporidium parvum oocyst wall. Parasit Vectors 2022; 15:335. [PMID: 36151578 PMCID: PMC9508764 DOI: 10.1186/s13071-022-05448-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/22/2022] [Indexed: 11/12/2022] Open
Abstract
Background Cryptosporidium parvum is a zoonotic parasitic protozoan that can infect a variety of animals and humans and is transmitted between hosts via oocysts. The oocyst wall provides strong protection against hostile environmental factors; however, research is limited concerning the oocyst wall at the proteomic level. Methods A comprehensive analysis of the proteome of oocyst wall of C. parvum was performed using label-free qualitative high-performance liquid chromatography (HPLC) fractionation and mass spectrometry-based qualitative proteomics technologies. Among the identified proteins, a surface protein (CpSP1) encoded by the C. parvum cgd7_5140 (Cpcgd7_5140) gene was predicted to be located on the surface of the oocyst wall. We preliminarily characterized the sequence and subcellular localization of CpSP1. Results A total of 798 proteins were identified, accounting for about 20% of the CryptoDB proteome. By using bioinformatic analysis, functional annotation and subcellular localization of the identified proteins were examined for better understanding of the characteristics of the oocyst wall. To verify the localization of CpSP1, an indirect immunofluorescent antibody assay demonstrated that the protein was localized on the surface of the oocyst wall, illustrating the potential usage as a marker for C. parvum detection in vitro. Conclusion The results provide a global framework about the proteomic composition of the Cryptosporidium oocyst wall, thereby providing a theoretical basis for further study of Cryptosporidium oocyst wall formation as well as the selection of targets for Cryptosporidium detection. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05448-8.
Collapse
Affiliation(s)
- Luyang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Center of National Animal Immunology, Zhengzhou, 450046, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China
| | - Yuexin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Center of National Animal Immunology, Zhengzhou, 450046, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China
| | - Zhaohui Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Center of National Animal Immunology, Zhengzhou, 450046, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China
| | - Dongfang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Center of National Animal Immunology, Zhengzhou, 450046, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.,International Joint Research Center of National Animal Immunology, Zhengzhou, 450046, China.,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Center of National Animal Immunology, Zhengzhou, 450046, China. .,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China.
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China. .,International Joint Research Center of National Animal Immunology, Zhengzhou, 450046, China. .,Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou, People's Republic of China.
| |
Collapse
|
3
|
Kolářová I, Florent I, Valigurová A. Parasitic Protists: Diversity of Adaptations to a Parasitic Lifestyle. Microorganisms 2022; 10:microorganisms10081560. [PMID: 36013978 PMCID: PMC9414628 DOI: 10.3390/microorganisms10081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Affiliation(s)
- Iva Kolářová
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Albertov 6, 128 44 Prague, Czech Republic
- Correspondence: (I.K.); (I.F.); (A.V.)
| | - Isabelle Florent
- Parasites and Free-Living Protists (UMR7245 CNRS-MNHN, MCAM), Department “Adaptations of Living Organisms”, National Museum of Natural History, CEDEX 05, 75231 Paris, France
- Correspondence: (I.K.); (I.F.); (A.V.)
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Correspondence: (I.K.); (I.F.); (A.V.)
| |
Collapse
|
4
|
Gao X, Yin J, Wang D, Li X, Zhang Y, Wang C, Zhang Y, Zhu G. Discovery of New Microneme Proteins in Cryptosporidium parvum and Implication of the Roles of a Rhomboid Membrane Protein (CpROM1) in Host-Parasite Interaction. Front Vet Sci 2021; 8:778560. [PMID: 34966810 PMCID: PMC8710574 DOI: 10.3389/fvets.2021.778560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/12/2021] [Indexed: 01/25/2023] Open
Abstract
Apicomplexan parasites possess several unique secretory organelles, including rhoptries, micronemes, and dense granules, which play critical roles in the invasion of host cells. The molecular content of these organelles and their biological roles have been well-studied in Toxoplasma and Plasmodium, but are underappreciated in Cryptosporidium, which contains many parasites of medical and veterinary importance. Only four proteins have previously been identified or proposed to be located in micronemes, one of which, GP900, was confirmed using immunogold electron microscopy (IEM) to be present in the micronemes of intracellular merozoites. Here, we report on the discovery of four new microneme proteins (MICs) in the sporozoites of the zoonotic species C. parvum, identified using immunofluorescence assay (IFA). These proteins are encoded by cgd3_980, cgd1_3550, cgd1_3680, and cgd2_1590. The presence of the protein encoded by cgd3_980 in sporozoite micronemes was further confirmed using IEM. Cgd3_980 encodes one of the three C. parvum rhomboid peptidases (ROMs) and is, thus, designated CpROM1. IEM also confirmed the presence of CpROM1 in the micronemes of intracellular merozoites, parasitophorous vacuole membranes (PVM), and feeder organelles (FO). CpROM1 was enriched in the pellicles and concentrated at the host cell–parasite interface during the invasion of sporozoites and its subsequent transformation into trophozoites. CpROM1 transcript levels were also higher in oocysts and excysted sporozoites than in the intracellular parasite stages. These observations indicate that CpROM1, an intramembrane peptidase with membrane proteolytic activity, is involved in host–parasite interactions, including invasion and proteostasis of PVM and FO.
Collapse
Affiliation(s)
- Xin Gao
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jigang Yin
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dongqiang Wang
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaohui Li
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ying Zhang
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chenchen Wang
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuanyuan Zhang
- Electron Microscopy Core Facility, The Institute of Zoonosis, Jilin University, Changchun, China
| | - Guan Zhu
- Key Laboratory of Zoonosis Research of the Ministry of Education, The Institute of Zoonosis, and the College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|