1
|
Haq IU, Müller P, Brantl S. A comprehensive study of the interactions in the B. subtilis degradosome with special emphasis on the role of the small proteins SR1P and SR7P. Mol Microbiol 2024; 121:40-52. [PMID: 37994189 DOI: 10.1111/mmi.15195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Here, we employ coelution experiments and far-western blotting to identify stable interactions between the main components of the B. subtilis degradosome and the small proteins SR1P and SR7P. Our data indicate that B. subtilis has a degradosome comprising at least RNases Y and PnpA, enolase, phosphofructokinase, glycerol-3-phosphate dehydrogenase GapA, and helicase CshA that can be co-purified without cross-linking. All interactions were corroborated by far-western blotting with proteins purified from E. coli. Previously, we discovered that stress-induced SR7P binds enolase to enhance its interaction with and activity of enolase-bound RNase Y (RnY), while SR1P transcribed under gluconeogenic conditions interacts with GapA to stimulate its interaction with and the activity of RnjA (RnjA). We show that SR1P can directly bind RnjA, RnY, and PnpA independently of GapA, whereas SR7P only interacts with enolase. Northern blotting suggests that the degradation of individual RNAs in B. subtilis under gluconeogenic or stress conditions depends on either RnjA or RnY alone or on RnjA-SR1P, RnY-SR1P, or RnY-Eno. In vitro degradation assays with RnY or RnjA substrates corroborate the in vivo role of SR1P. Currently, it is unknown which substrate property is decisive for the utilization of one of the complexes.
Collapse
Affiliation(s)
- Inam Ul Haq
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut, AG Bakteriengenetik, Jena, Germany
| | - Peter Müller
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut, AG Bakteriengenetik, Jena, Germany
| | - Sabine Brantl
- Friedrich-Schiller-Universität Jena, Matthias-Schleiden-Institut, AG Bakteriengenetik, Jena, Germany
| |
Collapse
|
2
|
Werelusz P, Galiniak S, Mołoń M. Molecular functions of moonlighting proteins in cell metabolic processes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119598. [PMID: 37774631 DOI: 10.1016/j.bbamcr.2023.119598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
Moonlighting proteins have more than one physiologically significant role within one polypeptide chain. The multifunctionality of proteins was first described in 1987 by Joram Piatigorsky and Graeme Wistow. Cells can benefit from involvement of these proteins in biological processes in several ways, e.g. at the energy level. Furthermore, cells have developed a number of mechanisms to change these proteins' functions. Moonlighting proteins are found in all types of organisms, including prokaryotes, eukaryotes, and even viruses. These proteins include a variety of enzymes that serve as receptors, secreted cytokines, transcription factors, or proteasome components. Additionally, there are many combinations of functions, e.g. among receptors and transcription factors, chaperones and cytokines, as well as transcription factors within the ribosome. This work describes enzymes involved in several important metabolic processes in cells, namely cellular respiration, gluconeogenesis, the urea cycle, and pentose phosphate metabolism.
Collapse
Affiliation(s)
| | - Sabina Galiniak
- Institute of Medical Sciences, Rzeszów University, Rzeszów, Poland
| | - Mateusz Mołoń
- Institute of Biology, Rzeszów University, Rzeszów, Poland.
| |
Collapse
|
3
|
Schnoor SB, Neubauer P, Gimpel M. Recent insights into the world of dual-function bacterial sRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1824. [PMID: 38039556 DOI: 10.1002/wrna.1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/03/2023]
Abstract
Dual-function sRNAs refer to a small subgroup of small regulatory RNAs that merges base-pairing properties of antisense RNAs with peptide-encoding properties of mRNA. Both functions can be part of either same or in another metabolic pathway. Here, we want to update the knowledge of to the already known dual-function sRNAs and review the six new sRNAs found since 2017 regarding their structure, functional mechanisms, evolutionary conservation, and role in the regulation of distinct biological/physiological processes. The increasing identification of dual-function sRNAs through bioinformatics approaches, RNomics and RNA-sequencing and the associated increase in regulatory understanding will likely continue to increase at the same rate in the future. This may improve our understanding of the physiology, virulence and resistance of bacteria, as well as enable their use in technical applications. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
| | - Peter Neubauer
- Department of Bioprocess Engineering, Technische Universitat Berlin, Berlin, Germany
| | - Matthias Gimpel
- Department of Bioprocess Engineering, Technische Universitat Berlin, Berlin, Germany
| |
Collapse
|
4
|
Brantl S, Ul Haq I. Small proteins in Gram-positive bacteria. FEMS Microbiol Rev 2023; 47:fuad064. [PMID: 38052429 PMCID: PMC10730256 DOI: 10.1093/femsre/fuad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Small proteins comprising less than 100 amino acids have been often ignored in bacterial genome annotations. About 10 years ago, focused efforts started to investigate whole peptidomes, which resulted in the discovery of a multitude of small proteins, but only a number of them have been characterized in detail. Generally, small proteins can be either membrane or cytosolic proteins. The latter interact with larger proteins, RNA or even metal ions. Here, we summarize our current knowledge on small proteins from Gram-positive bacteria with a special emphasis on the model organism Bacillus subtilis. Our examples include membrane-bound toxins of type I toxin-antitoxin systems, proteins that block the assembly of higher order structures, regulate sporulation or modulate the RNA degradosome. We do not consider antimicrobial peptides. Furthermore, we present methods for the identification and investigation of small proteins.
Collapse
Affiliation(s)
- Sabine Brantl
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| | - Inam Ul Haq
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| |
Collapse
|
5
|
Bannikova S, Khlebodarova T, Vasilieva A, Mescheryakova I, Bryanskaya A, Shedko E, Popik V, Goryachkovskaya T, Peltek S. Specific Features of the Proteomic Response of Thermophilic Bacterium Geobacillus icigianus to Terahertz Irradiation. Int J Mol Sci 2022; 23:ijms232315216. [PMID: 36499542 PMCID: PMC9735757 DOI: 10.3390/ijms232315216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Studying the effects of terahertz (THz) radiation on the proteome of temperature-sensitive organisms is limited by a number of significant technical difficulties, one of which is maintaining an optimal temperature range to avoid thermal shock as much as possible. In the case of extremophilic species with an increased temperature tolerance, it is easier to isolate the effects of THz radiation directly. We studied the proteomic response to terahertz radiation of the thermophilic Geobacillus icigianus, persisting under wide temperature fluctuations with a 60 °C optimum. The experiments were performed with a terahertz free-electron laser (FEL) from the Siberian Center for Synchrotron and Terahertz Radiation, designed and employed by the Institute of Nuclear Physics of the SB of the RAS. A G. icigianus culture in LB medium was THz-irradiated for 15 min with 0.23 W/cm2 and 130 μm, using a specially designed cuvette. The life cycle of this bacterium proceeds under conditions of wide temperature and osmotic fluctuations, which makes its enzyme systems stress-resistant. The expression of several proteins was shown to change immediately after fifteen minutes of irradiation and after ten minutes of incubation at the end of exposure. The metabolic systems of electron transport, regulation of transcription and translation, cell growth and chemotaxis, synthesis of peptidoglycan, riboflavin, NADH, FAD and pyridoxal phosphate cofactors, Krebs cycle, ATP synthesis, chaperone and protease activity, and DNA repair, including methylated DNA, take part in the fast response to THz radiation. When the response developed after incubation, the systems of the cell's anti-stress defense, chemotaxis, and, partially, cell growth were restored, but the respiration and energy metabolism, biosynthesis of riboflavin, cofactors, peptidoglycan, and translation system components remained affected and the amino acid metabolism system was involved.
Collapse
Affiliation(s)
- Svetlana Bannikova
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Correspondence:
| | - Tamara Khlebodarova
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Asya Vasilieva
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Irina Mescheryakova
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Alla Bryanskaya
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Elizaveta Shedko
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Vasily Popik
- Budker Institute of Nuclear Physics, Siberian Branch Russian Academy of Sciences (SB RAS), 11 Acad. Lavrentieva Pr., 630090 Novosibirsk, Russia
| | - Tatiana Goryachkovskaya
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Sergey Peltek
- Federal Research Center Institute of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Kurchatov Genomic Center of Cytology and Genetics (ICG), Siberian Branch of Russian Academy of Sciences (SB RAS), 10 Lavrentiev Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
6
|
Ogrodowczyk AM, Jeż M, Wróblewska B. The Manifold Bioactivity and Immunoreactivity of Microbial Proteins of Cow and Human Mature Milk in Late Lactation. Animals (Basel) 2022; 12:ani12192605. [PMID: 36230344 PMCID: PMC9558504 DOI: 10.3390/ani12192605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary The debate over the validity and benefits of breastfeeding children after the age of 1 and the superiority of human over cow’s milk is still ongoing. The recommendation of exclusive breastfeeding for about 6 months, followed by continued breastfeeding as a complementary food source for 1 year or longer, seems justified under many circumstances. The microbiological parameters of the milk play a vital role in this respect. So far, the focus has been on the qualitative profile of the microbiota, bacterial interactions with milk compounds, and the metabolites produced by bacteria. However, the role of bacterial proteins in milk, according to the authors’ knowledge, has been analyzed. It is reported that due to the disruption of the regulatory axis of the immune system in the course of hypersensitivity, organisms may give rise to decreased IgA-mediated (physiological) and increased IgE-mediated (hypersensitive) responses even to host gut microbiota proteins. In this publication, the aim was to compare whether the bacterial proteins in the mature human milk of late lactation and cow’s milk of different breeds can determine the different immunoreactive and bioactive properties of milk. Abstract (1) Human milk (HM) is a source of many microorganisms, whose structure contains microbial protein (MP). In addition to the known health-promoting properties of HM, many activities, including immunoreactivity, may result from the presence of MP. Cow’s milk (CM)-derived MP may be 10 times more abundant than MP derived from HM. (2) Raw cow’s milk samples of Holstein and Jersey breeds, commercially available pasteurized milk, and milk from three human donors in the late lactation phase were subjected to chemical and microbiological analyzes. Microorganisms from the milk material were recovered, cultured, and their activities were tested. MPs were extracted and their immunoreactivity was tested with human high IgE pooled sera. The milk types were subjected to simulated digestion. Milk and microbial proteins were identified with LCMS and subjected to an in silico analysis of their activities. Their antioxidant potential was analysed with the DPPH method. (3) The MP of HM shows a stronger IgE and IgG immunoreactivity in the tests with human sera compared to the MP of CM (p = 0.001; p = 0.02, respectively). There were no significant differences between the microbes in the MP of different cattle breeds. The MS-identification and in silico tests of milk and microbial proteins confirmed the presence of MP with immunoreactivity and antioxidant potential. (4) MPs possess a broad bioactive effect, which was determined by an in silico tools. The balance between an MP’s individual properties probably determines the raw material’s safety, which undoubtedly requires further research.
Collapse
Affiliation(s)
- Anna Maria Ogrodowczyk
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Immunology and Food Microbiology, Tuwima 10, 10-748 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-523-46-57
| | - Maja Jeż
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Chemical and Physical Properties of Food, Tuwima 10, 10-748 Olsztyn, Poland
| | - Barbara Wróblewska
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Department of Immunology and Food Microbiology, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
7
|
Ul Haq I, Brantl S, Müller P. A new role for SR1 from Bacillus subtilis: regulation of sporulation by inhibition of kinA translation. Nucleic Acids Res 2021; 49:10589-10603. [PMID: 34478554 PMCID: PMC8501984 DOI: 10.1093/nar/gkab747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
SR1 is a dual-function sRNA from Bacillus subtilis. It inhibits translation initiation of ahrC mRNA encoding the transcription activator of the arginine catabolic operons. Base-pairing is promoted by the RNA chaperone CsrA, which induces a slight structural change in the ahrC mRNA to facilitate SR1 binding. Additionally, SR1 encodes the small protein SR1P that interacts with glyceraldehyde-3P dehydrogenase A to promote binding to RNase J1 and enhancing J1 activity. Here, we describe a new target of SR1, kinA mRNA encoding the major histidine kinase of the sporulation phosphorelay. SR1 and kinA mRNA share 7 complementary regions. Base-pairing between SR1 and kinA mRNA decreases kinA translation without affecting kinA mRNA stability and represses transcription of the KinA/Spo0A downstream targets spoIIE, spoIIGA and cotA. The initial interaction between SR1 and kinA mRNA occurs 10 nt downstream of the kinA start codon and is decisive for inhibition. The sr1 encoded peptide SR1P is dispensable for kinA regulation. Deletion of sr1 accelerates sporulation resulting in low quality spores with reduced stress resistance and altered coat protein composition which can be compensated by sr1 overexpression. Neither CsrA nor Hfq influence sporulation or spore properties.
Collapse
Affiliation(s)
- Inam Ul Haq
- Matthias-Schleiden-Institut für Genetik, Bioinformatik und Molekulare Botanik, AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| | - Sabine Brantl
- Matthias-Schleiden-Institut für Genetik, Bioinformatik und Molekulare Botanik, AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| | - Peter Müller
- Matthias-Schleiden-Institut für Genetik, Bioinformatik und Molekulare Botanik, AG Bakteriengenetik, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| |
Collapse
|
8
|
Brantl S, Müller P. Cis- and Trans-Encoded Small Regulatory RNAs in Bacillus subtilis. Microorganisms 2021; 9:microorganisms9091865. [PMID: 34576762 PMCID: PMC8464778 DOI: 10.3390/microorganisms9091865] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Small regulatory RNAs (sRNAs) that act by base-pairing are the most abundant posttranscriptional regulators in all three kingdoms of life. Over the past 20 years, a variety of approaches have been employed to discover chromosome-encoded sRNAs in a multitude of bacterial species. However, although largely improved bioinformatics tools are available to predict potential targets of base-pairing sRNAs, it is still challenging to confirm these targets experimentally and to elucidate the mechanisms as well as the physiological role of their sRNA-mediated regulation. Here, we provide an overview of currently known cis- and trans-encoded sRNAs from B. subtilis with known targets and defined regulatory mechanisms and on the potential role of RNA chaperones that are or might be required to facilitate sRNA regulation in this important Gram-positive model organism.
Collapse
|