1
|
Yang Y, Chen J, Gong F, Miao J, Lin M, Liu R, Wang C, Ge F, Chen W. Exploring the genetic associations and causal relationships between antibody responses, immune cells, and various types of breast cancer. Sci Rep 2024; 14:28579. [PMID: 39562684 PMCID: PMC11577091 DOI: 10.1038/s41598-024-79521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND There may be potential associations between various pathogens, antibody immune responses, and breast cancer (BC), but the specific mechanisms and causal relationships remain unclear. METHODS First, multiple Mendelian randomization (MR) methods were used for univariable MR analysis to explore potential causal relationships between 34 antibody immune responses (related to 12 pathogens), 46 antibody immune responses (related to 13 pathogens), antibody responses post-COVID-19 vaccination, 731 immune cell types, and various BC subtypes (including overall BC, ER-positive, ER-negative, Luminal A, Luminal B, Luminal B HER2-negative, HER2-positive, and triple-negative BC). The primary results were then subjected to reverse MR analysis, heterogeneity testing using Cochran's Q, and horizontal pleiotropy testing. Robust findings were further used to design mediation pathways involving antibody immune responses, immune cells, and BC. After adjusting the effect estimates using multivariable MR (MVMR), a two-step mediation analysis was conducted to explore mediation pathways and mediation proportions. Finally, linkage disequilibrium score regression (LDSC) was applied to analyze the genetic correlation between phenotypes along mediation pathways, and cross-phenotype association analysis (CPASSOC) was performed to identify pleiotropic SNPs among three phenotypes along these pathways. Bayesian colocalization tests were conducted on pleiotropic SNPs using the multiple-trait-coloc (moloc). RESULTS We identified potential causal relationships between 15 antibody immune responses to 8 pathogens (Hepatitis B virus, Herpes Simplex Virus 2, Human Herpesvirus 6, Polyomavirus 2, BK polyomavirus, Cytomegalovirus, Helicobacter pylori, Chlamydia trachomatis), 250 immune cell phenotypes, and various BC subtypes. MVMR-adjusted mediation analysis revealed four potential mediation pathways. LDSC results showed no significant genetic correlation between phenotypes pairwise. CPASSOC analysis identified two potential mediation pathways with common pleiotropic SNPs (rs12121677, rs281378, rs2894250). However, none of these SNPs passed the Bayesian colocalization test by moloc. These results excluded horizontal pleiotropy, stabilizing MR analysis results. CONCLUSION This study utilized MR methods to analyze potential causal relationships between various antibody immune responses, immune cell types, and BC subtypes, identifying four potential regulatory mediation pathways. The findings of this study offer potential targets and research directions for virus-related and immunotherapy-related studies, providing a certain level of theoretical support. However, limitations such as GWAS sample size constraints and unclear specific pathophysiological mechanisms need further improvement and validation in future studies.
Collapse
Affiliation(s)
- Yang Yang
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Jiayi Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Fuhong Gong
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Jingge Miao
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Mengping Lin
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Ruimin Liu
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Chenxi Wang
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Wenlin Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunnan Hospital, The Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Hospital, Kunming, 650118, China.
| |
Collapse
|
2
|
Rossi C, Inzani FS, Cesari S, Rizzo G, Paulli M, Pedrazzoli P, Lasagna A, Lucioni M. The Role of Oncogenic Viruses in the Pathogenesis of Sporadic Breast Cancer: A Comprehensive Review of the Current Literature. Pathogens 2024; 13:451. [PMID: 38921749 PMCID: PMC11206847 DOI: 10.3390/pathogens13060451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Breast cancer is the most common malignancy in the female sex; although recent therapies have significantly changed the natural history of this cancer, it remains a significant challenge. In the past decade, evidence has been put forward that some oncogenic viruses may play a role in the development of sporadic breast cancer; however, data are scattered and mostly reported as sparse case series or small case-control studies. In this review, we organize and report current evidence regarding the role of high-risk human papillomavirus, mouse mammary tumor virus, Epstein-Barr virus, cytomegalovirus, bovine leukemia virus, human polyomavirus 2, and Merkel cell polyomavirus in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Chiara Rossi
- Section of Anatomic Pathology, Cerba HealthCare Lombardia, 20139 Milan, Italy
| | - Frediano Socrate Inzani
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Stefania Cesari
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Gianpiero Rizzo
- Unit of Medical Oncology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Marco Paulli
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Unit of Medical Oncology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Angioletta Lasagna
- Unit of Medical Oncology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Marco Lucioni
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| |
Collapse
|
3
|
Peredo-Harvey I, Bartek J, Ericsson C, Yaiw KC, Nistér M, Rahbar A, Söderberg-Naucler C. Higher Human Cytomegalovirus (HCMV) Specific IgG Antibody Levels in Plasma Samples from Patients with Metastatic Brain Tumors Are Associated with Longer Survival. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1248. [PMID: 37512060 PMCID: PMC10384986 DOI: 10.3390/medicina59071248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Background: Human cytomegalovirus (HCMV) has been detected in tissue samples from patients with glioblastoma but little is known about the systemic immunological response to HCMV in these patients. Objectives: To investigate the presence and clinical significance of HCMV antibodies levels in plasma samples obtained from patients with brain tumors. Materials and Methods: HCMV-specific IgG and IgM antibody levels were determined in 59 plasma samples collected from brain tumor patients included in a prospective study and in 114 healthy individuals. We examined if the levels of HCMV specific antibodies varied in patients with different brain tumor diagnoses compared to healthy individuals, and if antibody levels were predictive for survival time. Results: HCMV specific IgG antibodies were detected by ELISA in 80% and 89% of patients with GBM and astrocytoma grades II-III, respectively, in all samples (100%) from patients with secondary GBM and brain metastases, as well as in 80% of healthy donors (n = 114). All plasma samples were negative for HCMV-IgM. Patients with brain metastases who had higher plasma HCMV-IgG titers had longer survival times (p = 0.03). Conclusions: HCMV specific IgG titers were higher among all brain tumor patient groups compared with healthy donors, except for patients with secondary GBM. Higher HCMV specific IgG levels in patients with brain metastases but not in patients with primary brain tumors were associated with prolonged survival time.
Collapse
Affiliation(s)
- Inti Peredo-Harvey
- Department of Neurosurgery, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Department of Neurosurgery, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | | | - Koon-Chu Yaiw
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
- Division of Neurology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Monica Nistér
- Department of Oncology-Pathology, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
| | - Afsar Rahbar
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
- Division of Neurology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Cecilia Söderberg-Naucler
- Department of Medicine Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, SE-17164 Solna, Sweden
- Division of Neurology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
- Institute of Biomedicine, Infection and Immunology Unit, MediCity Research Laboratory, Turku University, FI-20014 Turku, Finland
| |
Collapse
|
4
|
Touma J, Pantalone MR, Rahbar A, Liu Y, Vetvik K, Sauer T, Söderberg-Naucler C, Geisler J. Human Cytomegalovirus Protein Expression Is Correlated with Shorter Overall Survival in Breast Cancer Patients: A Cohort Study. Viruses 2023; 15:v15030732. [PMID: 36992442 PMCID: PMC10054688 DOI: 10.3390/v15030732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Background: Human cytomegalovirus (HCMV) is increasingly suggested to be involved in human carcinogenesis and onco-modulation due to its ability to contribute to all hallmarks of cancer. Growing evidence demonstrates a link between HCMV infection and various malignancies, including breast cancer, which incidence and mortality are still on the rise. The etiology of breast cancer remains mostly unclear, leaving 80% of breast cancer cases considered to be sporadic. Identifying novel risk- and prognostic factors for improved breast cancer treatment and increased survival rates, were the objectives of this study. Methods: Automated immunohistochemical staining results for HCMV proteins in 109 breast tumors and lymph node metastasis were correlated with clinical follow-up data (>10 years). Statistical analyses for median Overall Survival (OS) were performed. Results: Survival analyses revealed shorter median OS for patients with HCMV-IE positive tumors of 118.4 months compared to 202.4 months for HCMV-IE negative tumors. A higher number of HCMV-LA positive cells in the tumors was also associated with a shorter OS in patients (146.2 months vs. 151.5 months). Conclusions: Our findings suggest a link between HCMV-infections and breast cancer prognosis, which paves the way for potential novel clinical intervention and targeted therapy that may prolong the overall survival of selected patients with breast cancer.
Collapse
Affiliation(s)
- Joel Touma
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
- Department of Oncology, Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
| | - Mattia Russel Pantalone
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Solna, Sweden
- Department of Neurology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Afsar Rahbar
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Solna, Sweden
- Department of Neurology, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Yan Liu
- Department of Clinical Molecular Biology, University of Oslo, 0315 Oslo, Norway
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
| | - Katja Vetvik
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
- Department of Breast and Endocrine Surgery, Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
| | - Torill Sauer
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
- Department of Pathology, Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
| | - Cecilia Söderberg-Naucler
- Department of Medicine, Solna, Microbial Pathogenesis Unit, Karolinska Institutet, 17164 Solna, Sweden
- Department of Neurology, Karolinska University Hospital, 17177 Stockholm, Sweden
- Institute of Biomedicine, Unit for Infection and Immunology, MediCity Research Laboratory, Turku University, 20520 Turku, Finland
- Correspondence: (C.S.-N.); (J.G.); Tel.: +46-8-5177-9816 (C.S.-N.); +47-9118-7447 (J.G.)
| | - Jürgen Geisler
- Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
- Department of Oncology, Akershus University Hospital (AHUS), 1478 Nordbyhagen, Norway
- Correspondence: (C.S.-N.); (J.G.); Tel.: +46-8-5177-9816 (C.S.-N.); +47-9118-7447 (J.G.)
| |
Collapse
|
5
|
Tumors and Cytomegalovirus: An Intimate Interplay. Viruses 2022; 14:v14040812. [PMID: 35458542 PMCID: PMC9028007 DOI: 10.3390/v14040812] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that alternates lytic and latent infection, infecting between 40 and 95% of the population worldwide, usually without symptoms. During its lytic cycle, HCMV can result in fever, asthenia, and, in some cases, can lead to severe symptoms such as hepatitis, pneumonitis, meningitis, retinitis, and severe cytomegalovirus disease, especially in immunocompromised individuals. Usually, the host immune response keeps the virus in a latent stage, although HCMV can reactivate in an inflammatory context, which could result in sequential lytic/latent viral cycles during the lifetime and thereby participate in the HCMV genomic diversity in humans and the high level of HCMV intrahost genomic variability. The oncomodulatory role of HCMV has been reported, where the virus will favor the development and spread of cancerous cells. Recently, an oncogenic role of HCMV has been highlighted in which the virus will directly transform primary cells and might therefore be defined as the eighth human oncovirus. In light of these new findings, it is critical to understand the role of the immune landscape, including the tumor microenvironment present in HCMV-harboring tumors. Finally, the oncomodulatory/oncogenic potential of HCMV could lead to the development of novel adapted therapeutic approaches against HCMV, especially since immunotherapy has revolutionized cancer therapeutic strategies and new therapeutic approaches are actively needed, particularly to fight tumors of poor prognosis.
Collapse
|
6
|
Human Cytomegalovirus Seropositivity and Viral DNA in Breast Tumors Are Associated with Poor Patient Prognosis. Cancers (Basel) 2022; 14:cancers14051148. [PMID: 35267456 PMCID: PMC8909033 DOI: 10.3390/cancers14051148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Human cytomegalovirus (HCMV) infects 40–70% of adult populations in developed countries and this is thought to be involved in breast cancer progression; however, reports of detection of the viral genome in breast tumors ranges from 0–100%. We optimized a method that is both sensitive and specific to detect HCMV DNA in tissues from Canadian breast cancer patients. Only ~42% of HCMV-seropositive patients expressed viral DNA in their breast tumors. Viral transcription was not detected in any HCMV-infected breast tumors, indicating a latent infection; however, HCMV seropositivity and the presence of latent infections in breast tumors were independently, and in combination, associated with increased metastasis. HCMV DNA-positive tumors were also associated with lower relapse-free survival. Therefore, HCMV infection status should be accounted for during the monitoring and treatment of breast cancer patients. Prevention or reducing the effects of HCMV infection could decrease morbidity and mortality from metastatic disease. Abstract Human cytomegalovirus (HCMV) infects 40–70% of adults in developed countries. Detection of HCMV DNA and/or proteins in breast tumors varies considerably, ranging from 0–100%. In this study, nested PCR to detect HCMV glycoprotein B (gB) DNA in breast tumors was shown to be sensitive and specific in contrast to the detection of DNA for immediate early genes. HCMV gB DNA was detected in 18.4% of 136 breast tumors while 62.8% of 94 breast cancer patients were seropositive for HCMV. mRNA for the HCMV immediate early gene was not detected in any sample, suggesting viral latency in breast tumors. HCMV seropositivity was positively correlated with age, body mass index and menopause. Patients who were HCMV seropositive or had HCMV DNA in their tumors were 5.61 (CI 1.77–15.67, p = 0.003) or 5.27 (CI 1.09–28.75, p = 0.039) times more likely to develop Stage IV metastatic tumors, respectively. Patients with HCMV DNA in tumors experienced reduced relapse-free survival (p = 0.042). Being both seropositive with HCMV DNA-positive tumors was associated with vascular involvement and metastasis. We conclude that determining the seropositivity for HCMV and detection of HCMV gB DNA in the breast tumors could identify breast cancer patients more likely to develop metastatic cancer and warrant special treatment.
Collapse
|
7
|
Vinogradskaya GR, Ivanov AV, Kushch AA. Mechanisms of Survival of Cytomegalovirus-Infected Tumor Cells. Mol Biol 2022; 56:668-683. [PMID: 36217337 PMCID: PMC9534468 DOI: 10.1134/s0026893322050132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022]
Abstract
Human cytomegalovirus (HCMV) DNA and proteins are often detected in malignant tumors, warranting studies of the role that HCMV plays in carcinogenesis and tumor progression. HCMV proteins were shown to regulate the key processes involved in tumorigenesis. While HCMV as an oncogenic factor just came into focus, its ability to promote tumor progression is generally recognized. The review discusses the viral factors and cell molecular pathways that affect the resistance of cancer cells to therapy. CMV inhibits apoptosis of tumor cells, that not only promotes tumor progression, but also reduces the sensitivity of cells to antitumor therapy. Autophagy was found to facilitate either cell survival or cell death in different tumor cells. In leukemia cells, HCMV induces a "protective" autophagy that suppresses apoptosis. Viral factors that mediate drug resistance and their interactions with key cell death pathways are necessary to further investigate in order to develop agents that can restore the tumor sensitivity to anticancer drugs.
Collapse
Affiliation(s)
- G. R. Vinogradskaya
- Konstantinov St. Petersburg Institute of Nuclear Physics, National Research Center “Kurchatov Institute”, 188300 Gatchina, Leningrad oblast Russia
| | - A. V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. A Kushch
- Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|