1
|
Huang Y, Liao M, Hu X, Hu H, Gong H. Advances in the clinical treatment of multidrug-resistant pathogens using polymyxins. J Antimicrob Chemother 2024; 79:3210-3229. [PMID: 39351975 DOI: 10.1093/jac/dkae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVES Polymyxins are a vital class of antibiotics used to combat multidrug-resistant Gram-negative bacteria. However, their use is limited due to potential nephrotoxicity and the availability of alternative antibiotics. This review aims to examine the properties of polymyxins and the clinical advances in their use for treating infections caused by carbapenem-resistant Gram-negative bacteria (CR-GNB). METHODS This review analyses literature on polymyxin properties and various clinical approaches, including intravenous drip infusion, nebulized or dry powder inhalation, and ointment application. Treatment efficacy in terms of bacterial eradication, cure rate and mortality rate are reviewed and evaluated. RESULTS Polymyxins have been reintroduced to treat critical infections due to the increasing prevalence of CR-GNB. Clinical trials and studies have confirmed that polymyxins can effectively treat CR-GNB infections when the formulation and administration are appropriate, with acceptable levels of nephrotoxicity. CONCLUSIONS In the future, the development of polymyxin formulations will aim to improve their clinical effectiveness while reducing toxicity and side effects and preventing the emergence of polymyxin-resistant strains. Enhanced efficacy and minimized potential side effects can be achieved by developing new polymyxin-delivery systems that provide a smart and controlled release or customized patient administration.
Collapse
Affiliation(s)
- Yizhen Huang
- Department of Pharmacy, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Mingrui Liao
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Xuzhi Hu
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, UK
| | - Honghua Hu
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haoning Gong
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Vogelaar T, Szostak SM, Lund R. Coacervation in Slow Motion: Kinetics of Complex Micelle Formation Induced by the Hydrolysis of an Antibiotic Prodrug. Mol Pharm 2024; 21:4157-4168. [PMID: 39011839 PMCID: PMC11304390 DOI: 10.1021/acs.molpharmaceut.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Colistin methanesulfonate (CMS) is the less-toxic prodrug of highly nephrotoxic colistin. To develop and understand highly necessary new antibiotic formulations, the hydrolysis of CMS to colistin must be better understood. Herein, with the addition of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMAA) to CMS, we show that we can follow the hydrolysis kinetics, employing small-angle X-ray scattering (SAXS) through complex coacervation. During this hydrolysis, hydroxy methanesulfonate (HMS) groups from CMS are cleaved, while the newly formed cationic amino groups complex with the anionic charge from the PMAA block. As the hydrolysis of HMS groups is slow, we can follow the complex coacervation process by the gradual formation of complex micelles containing activated antibiotics. Combining mass spectrometry (MS) with SAXS, we quantify the hydrolysis as a function of pH. Upon modeling the kinetic pathways, we found that complexation only happens after complete hydrolysis into colistin and that the process is accelerated under acidic conditions. At pH = 5.0, effective charge switching was identified as the slowest step in the CMS conversion, constituting the rate-limiting step in colistin formation.
Collapse
Affiliation(s)
- Thomas
D. Vogelaar
- Department
of Chemistry, University of Oslo, P.O. Box 1033 Blindern, Oslo NO-0315, Norway
| | - Szymon M. Szostak
- Department
of Chemistry, University of Oslo, P.O. Box 1033 Blindern, Oslo NO-0315, Norway
| | - Reidar Lund
- Department
of Chemistry, University of Oslo, P.O. Box 1033 Blindern, Oslo NO-0315, Norway
- Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Oslo NO-0315, Norway
| |
Collapse
|
3
|
Buendía JA, Guerrero Patiño D, Zuluaga Salazar AF. Efficacy of adjunctive inhaled colistin and tobramycin for ventilator-associated pneumonia: systematic review and meta-analysis. BMC Pulm Med 2024; 24:213. [PMID: 38698403 PMCID: PMC11064396 DOI: 10.1186/s12890-024-03032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
INTRODUCTION Ventilator-associated pneumonia (VAP) presents a significant challenge in intensive care units (ICUs). Nebulized antibiotics, particularly colistin and tobramycin, are commonly prescribed for VAP patients. However, the appropriateness of using inhaled antibiotics for VAP remains a subject of debate among experts. This study aims to provide updated insights on the efficacy of adjunctive inhaled colistin and tobramycin through a comprehensive systematic review and meta-analysis. METHODS A thorough search was conducted in MEDLINE, EMBASE, LILACS, COCHRANE Central, and clinical trials databases ( www. CLINICALTRIALS gov ) from inception to June 2023. Randomized controlled trials (RCTs) meeting specific inclusion criteria were selected for analysis. These criteria included mechanically ventilated patients diagnosed with VAP, intervention with inhaled Colistin and Tobramycin compared to intravenous antibiotics, and reported outcomes such as clinical cure, microbiological eradication, mortality, or adverse events. RESULTS The initial search yielded 106 records, from which only seven RCTs fulfilled the predefined inclusion criteria. The meta-analysis revealed a higher likelihood of achieving both clinical and microbiological cure in the groups receiving tobramycin or colistin compared to the control group. The relative risk (RR) for clinical cure was 1.23 (95% CI: 1.04, 1.45), and for microbiological cure, it was 1.64 (95% CI: 1.31, 2.06). However, there were no significant differences in mortality or the probability of adverse events between the groups. CONCLUSION Adjunctive inhaled tobramycin or colistin may have a positive impact on the clinical and microbiological cure rates of VAP. However, the overall quality of evidence is low, indicating a high level of uncertainty. These findings underscore the need for further rigorous and well-designed studies to enhance the quality of evidence and provide more robust guidance for clinical decision-making in the management of VAP.
Collapse
Affiliation(s)
- Jefferson Antonio Buendía
- Research Group in Pharmacology and Toxicology, Department of Pharmacology and Toxicology, University of Antioquia, Medellín, Colombia.
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
- Facultad de Medicina, Universidad de Antioquia, Carrera 51D #62-29, Medellín, Colombia.
| | - Diana Guerrero Patiño
- Research Group in Pharmacology and Toxicology, Department of Pharmacology and Toxicology, University of Antioquia, Medellín, Colombia
| | - Andrés Felipe Zuluaga Salazar
- Research Group in Pharmacology and Toxicology, Department of Pharmacology and Toxicology, University of Antioquia, Medellín, Colombia
- Laboratorio Integrado de Medicina Especializada (LIME), Facultad de Medicina, IPS Universitaria, Universidad de Antioquia, Antioquia, Colombia
| |
Collapse
|
4
|
Rodvold KA, Shorr AF. Lessons Are Still Being Learned about Intrapulmonary Antibiotic Concentrations. Am J Respir Crit Care Med 2024; 209:777-778. [PMID: 38300143 PMCID: PMC10995571 DOI: 10.1164/rccm.202312-2338ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024] Open
Affiliation(s)
- Keith A Rodvold
- Colleges of Pharmacy and Medicine University of Illinois Chicago Chicago, Illinois
| | - Andrew F Shorr
- Pulmonary and Critical Care Medicine Medstar Washington Hospital Center Washington, District of Columbia
| |
Collapse
|
5
|
Lee DH, Kim SY, Kim YK, Jung SY, Jang JH, Jang HJ, Lee JH. Intrapulmonary and Systemic Pharmacokinetics of Colistin Following Nebulization of Low-Dose Colistimethate Sodium in Patients with Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2024; 13:258. [PMID: 38534693 DOI: 10.3390/antibiotics13030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Colistimethate sodium (CMS) nebulization is associated with reduced systemic toxicity compared to intravenous injection, with potentially enhanced clinical efficacy. This study aimed to assess the pharmacokinetic (PK) properties of colistin during low-dose CMS nebulization in patients with ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Acinetobacter baumannii. A nonlinear mixed-effects modeling approach was applied to develop population PK models for colistin in both epithelial lining fluid (ELF) and plasma. Twenty patients participated, and 80 ELF and 100 plasma samples were used for model development. Median colistin concentrations measured in ELF were 614-fold, 408-fold, and 250-fold higher than in plasma at 1, 3, and 5 h, respectively. Time courses in both ELF and plasma were best described by a one-compartment model with a Weibull absorption process. When the final model was simulated, the maximum free concentration and area under the free colistin concentration-time curve at steady state over 24 h in the plasma were approximately 1/90 and 1/50 of the corresponding values in ELF at steady state, respectively. For an A. baumannii MIC of 1 mg/L, inhaling 75 mg of CMS at 6 h intervals was deemed appropriate, with dose adjustments needed for MICs exceeding 2 mg/L. Using a nebulizer for CMS resulted in a notably higher exposure of colistin in the ELF than plasma, indicating the potential of nebulization to reduce systemic toxicity while effectively treating VAP.
Collapse
Affiliation(s)
- Dong-Hwan Lee
- Department of Clinical Pharmacology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14066, Republic of Korea
| | - Shin-Young Kim
- Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Republic of Korea
| | - Yong-Kyun Kim
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14066, Republic of Korea
| | - So-Young Jung
- Department of Dermatology, Inje University Haeundae Paik Hospital, Busan 48108, Republic of Korea
| | - Ji-Hoon Jang
- Division of Pulmonology and Critical Care Medicine, Inje University Haeundae Paik Hospital, Busan 48108, Republic of Korea
| | - Hang-Jea Jang
- Division of Pulmonology and Critical Care Medicine, Inje University Haeundae Paik Hospital, Busan 48108, Republic of Korea
| | - Jae-Ha Lee
- Division of Pulmonology and Critical Care Medicine, Inje University Haeundae Paik Hospital, Busan 48108, Republic of Korea
| |
Collapse
|
6
|
Dhanani J, Roberts JA, Monsel A, Torres A, Kollef M, Rouby JJ. Understanding the nebulisation of antibiotics: the key role of lung microdialysis studies. Crit Care 2024; 28:49. [PMID: 38373973 PMCID: PMC10875779 DOI: 10.1186/s13054-024-04828-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/10/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Nebulisation of antibiotics is a promising treatment for ventilator-associated pneumonia (VAP) caused by multidrug-resistant organisms. Ensuring effective antibiotic concentrations at the site of infection in the interstitial space fluid is crucial for clinical outcomes. Current assessment methods, such as epithelial lining fluid and tissue homogenates, have limitations in providing longitudinal pharmacokinetic data. MAIN BODY Lung microdialysis, an invasive research technique predominantly used in animals, involves inserting probes into lung parenchyma to measure antibiotic concentrations in interstitial space fluid. Lung microdialysis offers unique advantages, such as continuous sampling, regional assessment of antibiotic lung concentrations and avoidance of bronchial contamination. However, it also has inherent limitations including the cost of probes and assay development, the need for probe calibration and limited applicability to certain antibiotics. As a research tool in VAP, lung microdialysis necessitates specialist techniques and resource-intensive experimental designs involving large animals undergoing prolonged mechanical ventilation. However, its potential impact on advancing our understanding of nebulised antibiotics for VAP is substantial. The technique may enable the investigation of various factors influencing antibiotic lung pharmacokinetics, including drug types, delivery devices, ventilator settings, interfaces and disease conditions. Combining in vivo pharmacokinetics with in vitro pharmacodynamic simulations can become feasible, providing insights to inform nebulised antibiotic dose optimisation regimens. Specifically, it may aid in understanding and optimising the nebulisation of polymyxins, effective against multidrug-resistant Gram-negative bacteria. Furthermore, lung microdialysis holds promise in exploring novel nebulisation therapies, including repurposed antibiotic formulations, bacteriophages and immunomodulators. The technique's potential to monitor dynamic biochemical changes in pneumonia, such as cytokines, metabolites and inflammation/infection markers, opens avenues for developing theranostic tools tailored to critically ill patients with VAP. CONCLUSION In summary, lung microdialysis can be a potential transformative tool, offering real-time insights into nebulised antibiotic pharmacokinetics. Its potential to inform optimal dosing regimen development based on precise target site concentrations and contribute to development of theranostic tools positions it as key player in advancing treatment strategies for VAP caused by multidrug-resistant organisms. The establishment of international research networks, exemplified by LUMINA (lung microdialysis applied to nebulised antibiotics), signifies a proactive step towards addressing complexities and promoting multicentre experimental studies in the future.
Collapse
Affiliation(s)
- Jayesh Dhanani
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Brisbane, Australia.
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.
| | - Jason A Roberts
- Faculty of Medicine, University of Queensland Centre for Clinical Research, Brisbane, Australia
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia
- Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Antoine Monsel
- Unité Mixte de Recherche (UMR)-S 959, Immunology-Immunopathology-Immunotherapy, Paris, Institut National de la Santé et de la Recherche Médicale (INSERM), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne University, GRC 29, Assistance Publique Hôpitaux de Paris (AP-HP), DMU DREAM, Multidisciplinary Intensive Care Unit, Department of Anaesthesiology and Critical Care, Pitié-Salpêtrière Hospital, Paris, France
| | - Antoni Torres
- Department of Pneumology, Institut Clinic del Tórax, Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), SGR 911- Ciber de Enfermedades Respiratorias (Ciberes), University of Barcelona, Barcelona, Spain
| | - Marin Kollef
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jean-Jacques Rouby
- Sorbonne University, GRC 29, Assistance Publique Hôpitaux de Paris (AP-HP), DMU DREAM, Multidisciplinary Intensive Care Unit, Department of Anaesthesiology and Critical Care, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
7
|
Stamatiou R, Vasilaki A, Tzini D, Deskata K, Zacharouli K, Ioannou M, Sgantzos M, Zakynthinos E, Makris D. Colistin Effects on Emphysematous Lung in an LPS-Sepsis Model. Antibiotics (Basel) 2023; 12:1731. [PMID: 38136765 PMCID: PMC10740909 DOI: 10.3390/antibiotics12121731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Emphysema is prevalent in various respiratory diseases like Chronic Obstructive Pulmonary Disease (COPD) and cystic fibrosis. Colistin and vasoconstrictive drugs are crucial for treating these patients when diagnosed with sepsis in the ICU. This study examines colistin impact in ether-induced emphysematous septic and non-septic animals, focusing on lung pathophysiology and inflammatory responses, including IL-1β, TNF-α, AMPK, caspase-3, cyclin-D1, and colistin levels in lung tissue. All animals exhibited significant emphysematous changes, accentuated by LPS-induced septic conditions, validating the emphysema model and highlighting the exacerbating effect of sepsis on lung pathology. Colistin, alone or with vasoconstrictive drugs, stimulated immune responses through increased inflammatory cell infiltration and the presence of lymphocytes, indicating potential immunomodulatory effects. Vasoconstriction did not alter the effects of colistin or sepsis but correlated with increased colistin levels in the lungs of septic animals. These observations suggest a potential interplay between vasoconstrictive drugs and colistin distribution/metabolism, leading to enhanced local concentrations of colistin in the lung microenvironment. The findings suggest the need for further investigations to optimize colistin and vasoconstrictive drug delivery in critically ill patients with lung pathologies. Understanding these complexities may guide more effective management of inflammatory responses and lung pathologies in these critical conditions.
Collapse
Affiliation(s)
- Rodopi Stamatiou
- Physiology Laboratory, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece
| | - Anna Vasilaki
- Pharmacology Laboratory, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.V.)
| | - Dimitra Tzini
- Pharmacology Laboratory, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.V.)
| | - Konstantina Deskata
- Intensive Care Unit, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece (E.Z.); (D.M.)
| | - Konstantina Zacharouli
- Pathology Department, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece (M.I.)
| | - Maria Ioannou
- Pathology Department, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece (M.I.)
| | - Markos Sgantzos
- Anatomy Department, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece;
| | - Epaminondas Zakynthinos
- Intensive Care Unit, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece (E.Z.); (D.M.)
| | - Demosthenes Makris
- Intensive Care Unit, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece (E.Z.); (D.M.)
| |
Collapse
|
8
|
Dugernier J, Le Pennec D, Maerckx G, Allimonnier L, Hesse M, Castanares-Zapatero D, Depoortere V, Vecellio L, Reychler G, Michotte JB, Goffette P, Docquier MA, Raftopoulos C, Jamar F, Laterre PF, Ehrmann S, Wittebole X. Inhaled drug delivery: a randomized study in intubated patients with healthy lungs. Ann Intensive Care 2023; 13:125. [PMID: 38072870 PMCID: PMC10710976 DOI: 10.1186/s13613-023-01220-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/24/2023] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND The administration technique for inhaled drug delivery during invasive ventilation remains debated. This study aimed to compare in vivo and in vitro the deposition of a radiolabeled aerosol generated through four configurations during invasive ventilation, including setups optimizing drug delivery. METHODS Thirty-one intubated postoperative neurosurgery patients with healthy lungs were randomly assigned to four configurations of aerosol delivery using a vibrating-mesh nebulizer and specific ventilator settings: (1) a specific circuit for aerosol therapy (SCAT) with the nebulizer placed at 30 cm of the wye, (2) a heated-humidified circuit switched off 30 min before the nebulization or (3) left on with the nebulizer at the inlet of the heated-humidifier, (4) a conventional circuit with the nebulizer placed between the heat and moisture exchanger filter and the endotracheal tube. Aerosol deposition was analyzed using planar scintigraphy. RESULTS A two to three times greater lung delivery was measured in the SCAT group, reaching 19.7% (14.0-24.5) of the nominal dose in comparison to the three other groups (p < 0.01). Around 50 to 60% of lung doses reached the outer region of both lungs in all groups. Drug doses in inner and outer lung regions were significantly increased in the SCAT group (p < 0.01), except for the outer right lung region in the fourth group due to preferential drug trickling from the endotracheal tube and the trachea to the right bronchi. Similar lung delivery was observed whether the heated humidifier was switched off or left on. Inhaled doses measured in vitro correlated with lung doses (R = 0.768, p < 0.001). CONCLUSION Optimizing the administration technique enables a significant increase in inhaled drug delivery to the lungs, including peripheral airways. Before adapting mechanical ventilation, studies are required to continue this optimization and to assess its impact on drug delivery and patient outcome in comparison to more usual settings.
Collapse
Affiliation(s)
- Jonathan Dugernier
- Soins Intensifs, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium.
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie, Université Catholique de Louvain, 1200, Brussels, Belgium.
- Physiothérapie, Département des Thérapies, Hôpital Pourtales, Réseau Hospitalier Neuchâtelois, 2000, Neuchâtel, Switzerland.
- Haute École Arc Santé, HES-SO, University of Applied Sciences and Arts of Western Switzerland, 2000, Neuchâtel, Switzerland.
| | - Déborah Le Pennec
- Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Faculté de médecine, Université de Tours, Tours, France
| | - Guillaume Maerckx
- Soins Intensifs, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie, Université Catholique de Louvain, 1200, Brussels, Belgium
- Secteur de Kinésithérapie et Ergothérapie, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | - Laurine Allimonnier
- Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Faculté de médecine, Université de Tours, Tours, France
| | - Michel Hesse
- Médecine Nucléaire, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | | | - Virginie Depoortere
- Médecine Nucléaire, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | - Laurent Vecellio
- Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Faculté de médecine, Université de Tours, Tours, France
| | - Gregory Reychler
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie, Université Catholique de Louvain, 1200, Brussels, Belgium
- Secteur de Kinésithérapie et Ergothérapie, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
- Pneumologie, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | - Jean-Bernard Michotte
- School of Health Sciences (HESAV), HES-SO, University of Applied Sciences and Arts of Western Switzerland, 1011, Lausanne, Switzerland
| | - Pierre Goffette
- Radiologie Interventionnelle, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | | | | | - François Jamar
- Médecine Nucléaire, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| | | | - Stephan Ehrmann
- Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Faculté de médecine, Université de Tours, Tours, France
- CHRU Tours, Médecine Intensive Réanimation, CIC INSERM 1415, CRICS-TriggerSep F-CRIN Research Network, Tours, France
- Université de Tours, Tours, France
| | - Xavier Wittebole
- Soins Intensifs, Cliniques Universitaires Saint-Luc, 1200, Brussels, Belgium
| |
Collapse
|
9
|
Leone M, Duclos G, Lakbar I, Martin-Loeches I, Einav S. Antimicrobial resistance and outcome in the critically ill patient: An opinion paper. J Crit Care 2023; 77:154352. [PMID: 37302284 DOI: 10.1016/j.jcrc.2023.154352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance (AMR) is associated with increased mortality and resources consumption in critically ill patients. However, the causality of AMR in this mortality remains unclear. This opinion paper aims to overview the effects of multidrug resistant (MDR) pathogens on the outcomes of critically ill patients, considering different variables as appropriateness of empirical antimicrobial therapy, severity of sepsis, comorbid conditions and frailty. Large studies based on national database associated MDR and increased mortality in critically ill patients. However, the patients carrying MDR pathogens, as compared with those carrying non-MDR pathogens, are those with co-morbid conditions, high risk of frailty and invasive procedures. In addition, inappropriate empirical antibiotics are more often used in these patients as well as withholding and withdrawing of life-sustained therapy. Future studies on AMR should report the rate of appropriateness of empirical antimicrobial therapy, withholding and withdrawing of life-sustained therapy.
Collapse
Affiliation(s)
- Marc Leone
- Department of Anaesthesiology and Intensive Care Unit, North Hospital, Assistance Publique Hôpitaux Universitaires de Marseille, Aix Marseille University, Marseille, France; Centre for Nutrition and Cardiovascular Disease (C2VN), INSERM, INRAE, Aix Marseille University, 13005 Marseille, France.
| | - Gary Duclos
- Department of Anaesthesiology and Intensive Care Unit, North Hospital, Assistance Publique Hôpitaux Universitaires de Marseille, Aix Marseille University, Marseille, France
| | - Ines Lakbar
- Department of Anaesthesiology and Intensive Care Unit, North Hospital, Assistance Publique Hôpitaux Universitaires de Marseille, Aix Marseille University, Marseille, France; CEReSS, Health Service Research and Quality of Life Centre, School of Medicine, La Timone, Aix-Marseille University, Marseille, France
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James' Hospital, Dublin, Ireland
| | - Sharon Einav
- Hebrew University Faculty of Medicine, Jerusalem 23456, Israel; Intensive Care Unit of the Shaare Zedek Medical Center, Jerusalem Y56L5, Israel
| |
Collapse
|
10
|
Karaiskos I, Gkoufa A, Polyzou E, Schinas G, Athanassa Z, Akinosoglou K. High-Dose Nebulized Colistin Methanesulfonate and the Role in Hospital-Acquired Pneumonia Caused by Gram-Negative Bacteria with Difficult-to-Treat Resistance: A Review. Microorganisms 2023; 11:1459. [PMID: 37374959 DOI: 10.3390/microorganisms11061459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Hospital-acquired pneumonia, including ventilator-associated pneumonia (VAP) due to difficult-to-treat-resistant (DTR) Gram-negative bacteria, contributes significantly to morbidity and mortality in ICUs. In the era of COVID-19, the incidences of secondary nosocomial pneumonia and the demand for invasive mechanical ventilation have increased dramatically with extremely high attributable mortality. Treatment options for DTR pathogens are limited. Therefore, an increased interest in high-dose nebulized colistin methanesulfonate (CMS), defined as a nebulized dose above 6 million IU (MIU), has come into sight. Herein, the authors present the available modern knowledge regarding high-dose nebulized CMS and current information on pharmacokinetics, clinical studies, and toxicity issues. A brief report on types of nebulizers is also analyzed. High-dose nebulized CMS was administrated as an adjunctive and substitutive strategy. High-dose nebulized CMS up to 15 MIU was attributed with a clinical outcome of 63%. High-dose nebulized CMS administration offers advantages in terms of efficacy against DTR Gram-negative bacteria, a favorable safety profile, and improved pharmacokinetics in the treatment of VAP. However, due to the heterogeneity of studies and small sample population, the apparent benefit in clinical outcomes must be proven in large-scale trials to lead to the optimal use of high-dose nebulized CMS.
Collapse
Affiliation(s)
- Ilias Karaiskos
- First Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, 4, Erythrou Stavrou Str. & Kifisias, 15123 Athens, Greece
| | - Aikaterini Gkoufa
- Infectious Diseases and COVID-19 Unit, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Elena Polyzou
- School of Medicine, University of Patras, 26504 Patras, Greece
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| | | | - Zoe Athanassa
- Intensive Care Unit, Sismanoglio General Hospital, 15126 Athens, Greece
| | - Karolina Akinosoglou
- School of Medicine, University of Patras, 26504 Patras, Greece
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
11
|
How to Use Nebulized Antibiotics in Severe Respiratory Infections. Antibiotics (Basel) 2023; 12:antibiotics12020267. [PMID: 36830177 PMCID: PMC9952454 DOI: 10.3390/antibiotics12020267] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Difficult-to-treat pulmonary infections caused by multidrug-resistant (MDR) pathogens are of great concern because their incidence continues to increase worldwide and they are associated with high morbidity and mortality. Nebulized antibiotics are increasingly being used in this context. The advantages of the administration of a nebulized antibiotic in respiratory tract infections due to MDR include the potential to deliver higher drug concentrations to the site of infection, thus minimizing the systemic adverse effects observed with the use of parenteral or oral antibiotic agents. However, there is an inconsistency between the large amount of experimental evidence supporting the administration of nebulized antibiotics and the paucity of clinical studies confirming the efficacy and safety of these drugs. In this narrative review, we describe the current evidence on the use of nebulized antibiotics for the treatment of severe respiratory infections.
Collapse
|
12
|
Use of High-Dose Nebulized Colistimethate in Patients with Colistin-Only Susceptible Acinetobacter baumannii VAP: Clinical, Pharmacokinetic and Microbiome Features. Antibiotics (Basel) 2023; 12:antibiotics12010125. [PMID: 36671325 PMCID: PMC9855104 DOI: 10.3390/antibiotics12010125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
(1) Background: Colistin-only susceptible (COS) Acinetobacter baumannii (AB) ventilator-associated pneumonia (VAP) represents a clinical challenge in the Intensive Care Unit (ICU) due to the negligible lung diffusion of this molecule and the low-grade evidence on efficacy of its nebulization. (2) Methods: We conducted a prospective observational study on 134 ICU patients with COS-AB VAP to describe the 'real life' clinical use of high-dose (5 MIU q8) aerosolized colistin, using a vibrating mesh nebulizer. Lung pharmacokinetics and microbiome features were investigated. (3) Results: Patients were enrolled during the COVID-19 pandemic with the ICU presenting a SAPS II of 42 [32-57]. At VAP diagnosis, the median PaO2/FiO2 was 120 [100-164], 40.3% were in septic shock, and 24.6% had secondary bacteremia. The twenty-eight day mortality was 50.7% with 60.4% and 40.3% rates of clinical cure and microbiological eradication, respectively. We did not observe any drug-related adverse events. Epithelial lining fluid colistin concentrations were far above the CRAB minimal-inhibitory concentration and the duration of nebulized therapy was an independent predictor of microbiological eradication (12 [9.75-14] vs. 7 [4-13] days, OR (95% CI): 1.069 (1.003-1.138), p = 0.039). (4) Conclusions: High-dose and prolonged colistin nebulization, using a vibrating mesh, was a safe adjunctive therapeutic strategy for COS-AB VAP. Its right place and efficacy in this setting warrant investigation in interventional studies.
Collapse
|
13
|
Feng JY, Huang JR, Lee CC, Tseng YH, Pan SW, Chen YM, Yang KY. Role of nebulized colistin as a substitutive strategy against nosocomial pneumonia caused by CR-GNB in intensive care units: a retrospective cohort study. Ann Intensive Care 2023; 13:1. [PMID: 36609725 PMCID: PMC9825688 DOI: 10.1186/s13613-022-01088-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/26/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Adverse reactions, especially nephrotoxicity, are great concerns of intravenous colistin treatment. The role of substitutive nebulized colistin in treating nosocomial pneumonia caused by carbapenem-resistant Gram-negative bacterial (CR-GNB) in critically ill patients remains unknown. METHODS This retrospective study enrolled patients with nosocomial pneumonia caused by colistin-susceptible CRGNB in the intensive care unit (ICU) without intravenous colistin treatment. Patients were categorized based on whether substitutive nebulized colistin was used alongside other intravenous antibiotics. Clinical responses and mortality rates were compared between the two groups in the original and propensity score (PS)-matched cohorts. This study aimed to investigate the clinical effectiveness of substitutive nebulized colistin in treatment outcomes of nosocomial pneumonia caused by CR-GNB. The impact of dosing strategy of nebulized colistin was also explored. RESULTS In total, 343 and 214 patients with and without substitutive nebulized colistin, respectively, were enrolled for analysis. In the PS-matched cohort, clinical failure rates on day 7 (22.6 vs. 42.6%, p = 0.001), day 14 (27.0 vs. 42.6%, p = 0.013), and day 28 (27.8 vs. 41.7%, p = 0.027) were significantly lower in patients with nebulized colistin. In multivariate analysis, nebulized colistin was an independent factor associated with lower day 14 clinical failure (Original cohort: adjusted odds ratio (aOR) 0.45, 95% confidence interval (CI) 0.30-0.67; PS-matched cohort: aOR 0.48, 95% CI 0.27-0.87). There were no differences in clinical failure rate and mortality rate between patients receiving high (> 6 MIU/day) and low (≤ 6 MIU/day) dose nebulized colistin in the PS-matched cohort. CONCLUSIONS In ICU-admitted patients with nosocomial pneumonia caused by colistin-susceptible CRGNB, substitutive nebulized colistin was associated with better clinical outcomes.
Collapse
Affiliation(s)
- Jia-Yih Feng
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan ,grid.260539.b0000 0001 2059 7017School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jhong-Ru Huang
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan
| | - Chang-Ching Lee
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan
| | - Yen-Han Tseng
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan ,grid.260539.b0000 0001 2059 7017School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Wei Pan
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan ,grid.260539.b0000 0001 2059 7017School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Min Chen
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan ,grid.260539.b0000 0001 2059 7017School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuang-Yao Yang
- grid.278247.c0000 0004 0604 5314Department of Chest Medicine, Taipei Veterans General Hospital, #201, Sec. 2, Shih-Pai Road, Taipei, 11217 Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan ,grid.260539.b0000 0001 2059 7017Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
14
|
Zhu S, Song C, Zhang J, Diao S, Heinrichs TM, Martins FS, Lv Z, Zhu Y, Yu M, Sy SKB. Effects of amikacin, polymyxin-B, and sulbactam combination on the pharmacodynamic indices of mutant selection against multi-drug resistant Acinetobacter baumannii. Front Microbiol 2022; 13:1013939. [PMID: 36338049 PMCID: PMC9632654 DOI: 10.3389/fmicb.2022.1013939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/29/2022] [Indexed: 12/01/2022] Open
Abstract
Amikacin and polymyxins as monotherapies are ineffective against multidrug-resistant Acinetobacter baumannii at the clinical dose. When polymyxins, aminoglycosides, and sulbactam are co-administered, the combinations exhibit in vitro synergistic activities. The minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined in 11 and 5 clinical resistant isolates of A. baumannii harboring OXA-23, respectively, in order to derive the fraction of time over the 24-h wherein the free drug concentration was within the mutant selection window (fTMSW) and the fraction of time that the free drug concentration was above the MPC (fT>MPC) from simulated pharmacokinetic profiles. The combination of these three antibiotics can confer susceptibility in multi-drug resistant A. baumannii and reduce the opportunity for bacteria to develop further resistance. Clinical intravenous dosing regimens of amikacin, polymyxin-B, and sulbactam were predicted to optimize fTMSW and fT>MPC from drug exposures in the blood. Mean fT>MPC were ≥ 60% and ≥ 80% for amikacin and polymyxin-B, whereas mean fTMSW was reduced to <30% and <15%, respectively, in the triple antibiotic combination. Due to the low free drug concentration of amikacin and polymyxin-B simulated in the epithelial lining fluid, the two predicted pharmacodynamic parameters in the lung after intravenous administration were not optimal even in the combination therapy setting.
Collapse
Affiliation(s)
- Shixing Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chu Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jiayuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shuo Diao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Tobias M. Heinrichs
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Frederico S. Martins
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Zhihua Lv,
| | - Yuanqi Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Mingming Yu,
| | - Sherwin K. B. Sy
- Department of Statistics, State University of Maringá, Paraná, Brazil
- Sherwin K. B. Sy,
| |
Collapse
|
15
|
Rouby JJ, Zhu Y, Torres A, Rello J, Monsel A. Aerosolized polymyxins for ventilator-associated pneumonia caused by extensive drug resistant Gram-negative bacteria: class, dose and manner should remain the trifecta. Ann Intensive Care 2022; 12:97. [PMID: 36251177 PMCID: PMC9576828 DOI: 10.1186/s13613-022-01068-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/26/2022] [Indexed: 01/28/2023] Open
Affiliation(s)
- Jean-Jacques Rouby
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance-Publique Hôpitaux de Paris, Sorbonne University of Paris, Paris, France.
| | - Yinggang Zhu
- Department of Pulmonary and Critical Care Medicine, Hua-Dong Hospital, Fudan University, Shanghai, China
| | - Antoni Torres
- Department of Pneumology, SGR 911- Ciber de Enfermedades Respiratorias (Ciberes), Institut Clinic del Tórax, Hospital Clinic of Barcelona - Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Jordi Rello
- Centro de Investigación Biomédica en Red (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Clinical Research & Innovation in Pneumonia & Sepsis, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Clinical Research, CHU Nîmes, Université Montpellier-Nîmes, Nîmes, France
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance-Publique Hôpitaux de Paris, Sorbonne University of Paris, Paris, France.,Unité mixte de recherche (UMR)-S 959, Immunology-Immunopathology-Immunotherapy (I3), Institut National de La Santé et de La Recherche Médicale (INSERM), Paris, France.,Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
16
|
Coya JM, Fraile-Ágreda V, de Tapia L, García-Fojeda B, Sáenz A, Bengoechea JA, Kronqvist N, Johansson J, Casals C. Cooperative action of SP-A and its trimeric recombinant fragment with polymyxins against Gram-negative respiratory bacteria. Front Immunol 2022; 13:927017. [PMID: 36159837 PMCID: PMC9493720 DOI: 10.3389/fimmu.2022.927017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
The exploration of therapies combining antimicrobial lung proteins and conventional antibiotics is important due to the growing problem of multidrug-resistant bacteria. The aim of this study was to investigate whether human SP-A and a recombinant trimeric fragment (rfhSP-A) have cooperative antimicrobial activity with antibiotics against pathogenic Gram-negative bacteria. We found that SP-A bound the cationic peptide polymyxin B (PMB) with an apparent dissociation constant (K D) of 0.32 ± 0.04 µM. SP-A showed synergistic microbicidal activity with polymyxin B and E, but not with other antibiotics, against three SP-A-resistant pathogenic bacteria: Klebsiella pneumoniae, non-typable Haemophilus influenzae (NTHi), and Pseudomonas aeruginosa. SP-A was not able to bind to K. pneumoniae, NTHi, or to mutant strains thereof expressing long-chain lipopolysaccharides (or lipooligosaccharides) and/or polysaccharide capsules. In the presence of PMB, SP-A induced the formation of SP-A/PMB aggregates that enhance PMB-induced bacterial membrane permeabilization. Furthermore, SP-A bound to a molecular derivative of PMB lacking the acyl chain (PMBN) with a K D of 0.26 ± 0.02 μM, forming SP-A/PMBN aggregates. PMBN has no bactericidal activity but can bind to the outer membrane of Gram-negative bacteria. Surprisingly, SP-A and PMBN showed synergistic bactericidal activity against Gram-negative bacteria. Unlike native supratrimeric SP-A, the trimeric rfhSP-A fragment had small but significant direct bactericidal activity against K. pneumoniae, NTHi, and P. aeruginosa. rfhSP-A did not bind to PMB under physiological conditions but acted additively with PMB and other antibiotics against these pathogenic bacteria. In summary, our results significantly improve our understanding of the antimicrobial actions of SP-A and its synergistic action with PMB. A peptide based on SP-A may aid the therapeutic use of PMB, a relatively cytotoxic antibiotic that is currently being reintroduced into clinics due to the global problem of antibiotic resistance.
Collapse
Affiliation(s)
- Juan Manuel Coya
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Víctor Fraile-Ágreda
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Lidia de Tapia
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Belén García-Fojeda
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Alejandra Sáenz
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - José A. Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Nina Kronqvist
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
17
|
Liu J, Shao M, Xu Q, Liu F, Pan X, Wu J, Xiong L, Wu Y, Tian M, Yao J, Huang S, Zhang L, Chen Y, Zhang S, Wen Z, Du H, TaoWang, Liu Y, Li W, Xu Y, Teboul JL, Chen D. Low-dose intravenous plus inhaled versus intravenous polymyxin B for the treatment of extensive drug-resistant Gram-negative ventilator-associated pneumonia in the critical illnesses: a multi-center matched case-control study. Ann Intensive Care 2022; 12:72. [PMID: 35934730 PMCID: PMC9357592 DOI: 10.1186/s13613-022-01033-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/11/2022] [Indexed: 12/14/2022] Open
Abstract
Background The mortality of extensively drug-resistant Gram-negative (XDR GN) bacilli-induced ventilator-associated pneumonia (VAP) is extremely high. The purpose of this study was to compare the efficacy and safety of inhaled (IH) plus intravenous (IV) polymyxin B versus IV polymyxin B in XDR GN bacilli VAP patients. Methods A retrospective multi-center observational cohort study was performed at eight ICUs between January 1st 2018, and January 1st 2020 in China. Data from all patients treated with polymyxin B for a microbiologically confirmed VAP were analyzed. The primary endpoint was the clinical cure of VAP. The favorable clinical outcome, microbiological outcome, VAP-related mortality and all-cause mortality during hospitalization, and side effects related with polymyxin B were secondary endpoints. Favorable clinical outcome included clinical cure or clinical improvement. Results 151 patients and 46 patients were treated with IV polymyxin B and IH plus IV polymyxin B, respectively. XDR Klebsiella pneumoniae was the main isolated pathogen (n = 83, 42.1%). After matching on age (± 5 years), gender, septic shock, and Apache II score (± 4 points) when polymyxin B was started, 132 patients were included. 44 patients received simultaneous IH plus IV polymyxin B and 88 patients received IV polymyxin B. The rates of clinical cure (43.2% vs 27.3%, p = 0.066), bacterial eradication (36.4% vs 23.9%, p = 0.132) as well as VAP-related mortality (27.3% vs 34.1%, p = 0.428), all-cause mortality (34.1% vs 42.0%, p = 0.378) did not show any significant difference between the two groups. However, IH plus IV polymyxin B therapy was associated with improved favorable clinical outcome (77.3% vs 58.0%, p = 0.029). Patients in the different subgroups (admitted with medical etiology, infected with XDR K. pneumoniae, without bacteremia, with immunosuppressive status) were with odd ratios (ORs) in favor of the combined therapy. No patient required polymyxin B discontinuation due to adverse events. Additional use of IH polymyxin B (aOR 2.63, 95% CI 1.06, 6.66, p = 0.037) was an independent factor associated with favorable clinical outcome. Conclusions The addition of low-dose IH polymyxin B to low-dose IV polymyxin B did not provide efficient clinical cure and bacterial eradication in VAP caused by XDR GN bacilli. Keypoints Additional use of IH polymyxin B was the sole independent risk factor of favorable clinical outcome. Patients in the different subgroups were with HRs substantially favoring additional use of IH polymyxin B. No patients required polymyxin B discontinuation due to adverse events. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-022-01033-5.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Qianghong Xu
- Department of Critical Care Medicine, Zhejiang Hospital, No.12 Lingyin Road, HangZhou, 310015, China
| | - Fen Liu
- Department of Critical Care Medicine, the First Affiliated Hospital of Nanchang University, No.17, YongwaiZheng Street, Nanchang, 330006, Jiangxi, China
| | - Xiaojun Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Er Road, Guangzhou, 510010, China
| | - Lihong Xiong
- Department of Intensive Care Unit, The Second People's Hospital of Shenzhen, Futian District, Sungang West Road, Shenzhen, 3002518035, China
| | - Yueming Wu
- Emergency and Critical Care Center, Lishui People's Hospital, No. 15 Dazhong Road, Lishui, 323000, China
| | - Mi Tian
- Department of Intensive Care Unit, Huashan Hospital, Fudan University, No. 12 Middle Urumqi Road, Shanghai, 200040, China
| | - Jianying Yao
- Department of Intensive Care Unit, The First People's Hospital of KunShan, No 91, Qianjin Road, KunShan, 215300, China
| | - Sisi Huang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Lidi Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Yizhu Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Sheng Zhang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Zhenliang Wen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Hangxiang Du
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - TaoWang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Yongan Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Wenzhe Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Yan Xu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China
| | - Jean-Louis Teboul
- Service de Médecine-Intensive Réanimation, Hôpital Bicêtre, AP-HP. Université Paris-Saclay, Inserm UMR 999, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin 2nd Road, Shanghai, 201801, China.
| |
Collapse
|
18
|
Antibiotic Therapy for Difficult-to-Treat Infections in Lung Transplant Recipients: A Practical Approach. Antibiotics (Basel) 2022; 11:antibiotics11050612. [PMID: 35625256 PMCID: PMC9137688 DOI: 10.3390/antibiotics11050612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Lung transplant recipients are at higher risk to develop infectious diseases due to multi-drug resistant pathogens, which often chronically colonize the respiratory tract before transplantation. The emergence of these difficult-to-treat infections is a therapeutic challenge, and it may represent a contraindication to lung transplantation. New antibiotic options are currently available, but data on their efficacy and safety in the transplant population are limited, and clinical evidence for choosing the most appropriate antibiotic therapy is often lacking. In this review, we provide a summary of the best evidence available in terms of choice of antibiotic and duration of therapy for MDR/XDR P. aeruginosa, Burkholderia cepacia complex, Mycobacterium abscessus complex and Nocardia spp. infections in lung transplant candidates and recipients.
Collapse
|
19
|
Giacobbe DR, Roberts JA, Abdul-Aziz MH, de Montmollin E, Timsit JF, Bassetti M. Treatment of ventilator-associated pneumonia due to carbapenem-resistant Gram-negative bacteria with novel agents: a contemporary, multidisciplinary ESGCIP perspective. Expert Rev Anti Infect Ther 2022; 20:963-979. [PMID: 35385681 DOI: 10.1080/14787210.2022.2063838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION : In the past 15 years, treatment of VAP caused by carbapenem-resistant Gram-negative bacteria (CR-GNB) has represented an intricate challenge for clinicians. AREAS COVERED In this perspective article, we discuss the available clinical data about novel agents for the treatment of CR-GNB VAP, together with general PK/PD principles for the treatment of VAP, in the attempt to provide some suggestions for optimizing antimicrobial therapy of CR-GNB VAP in the daily clinical practice. EXPERT OPINION Recently, novel BL and BL/BLI combinations have become available that have shown potent in vitro activity against CR-GNB and have attracted much interest as novel, less toxic, and possibly more efficacious options for the treatment of CR-GNB VAP compared with previous standard of care. Besides randomized controlled trials, a good solution to enrich our knowledge on how to use these novel agents at best in the near future, while at the same time remaining adherent to current evidence-based guidelines, is to improve our collaboration to conduct larger multinational observational studies to collect sufficiently large populations treated in real life with those novel agents for which guidelines currently do not provide a recommendation (in favor or against) for certain causative organisms.
Collapse
Affiliation(s)
- Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| | - Jason A Roberts
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Herston Infectious Diseases Institute (HeIDI), Metro North Health, Brisbane, Australia.,Departments of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes France
| | - Mohd H Abdul-Aziz
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Etienne de Montmollin
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Jean-François Timsit
- Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID).,Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France.,INSERM IAME UMR 1137, University of Paris, Sorbonne Paris Cite, Paris, France
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.,Critically ill patients study group (ESGCIP) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID)
| |
Collapse
|
20
|
Boisson M, Bouglé A, Sole-Lleonart C, Dhanani J, Arvaniti K, Rello J, Rouby JJ, Mimoz O. Nebulized Antibiotics for Healthcare- and Ventilator-Associated Pneumonia. Semin Respir Crit Care Med 2022; 43:255-270. [PMID: 35042259 DOI: 10.1055/s-0041-1740340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Global emergence of multidrug-resistant and extensive drug-resistant gram-negative bacteria has increased the risk of treatment failure, especially for healthcare- or ventilator-associated pneumonia (HAP/VAP). Nebulization of antibiotics, by providing high intrapulmonary antibiotic concentrations, represents a promising approach to optimize the treatment of HAP/VAP due to multidrug-resistant and extensive drug-resistant gram-negative bacteria, while limiting systemic antibiotic exposure. Aminoglycosides and colistin methanesulfonate are the most common nebulized antibiotics. Although optimal nebulized drug dosing regimen is not clearly established, high antibiotic doses should be administered using vibrating-mesh nebulizer with optimized ventilator settings to ensure safe and effective intrapulmonary concentrations. When used preventively, nebulized antibiotics reduced the incidence of VAP without any effect on mortality. This approach is not yet recommended and large randomized controlled trials should be conducted to confirm its benefit and explore the impact on antibiotic selection pressure. Compared with high-dose intravenous administration, high-dose nebulized colistin methanesulfonate seems to be more effective and safer in the treatment of ventilator-associated tracheobronchitis and VAP caused by multidrug resistant and extensive-drug resistant gram-negative bacteria. Adjunctive nebulized aminoglycosides could increase the clinical cure rate and bacteriological eradication in patients suffering from HAP/VAP due to multidrug-resistant and extensive drug-resistant gram-negative bacteria. As nebulized aminoglycosides broadly diffuse in the systemic circulation of patients with extensive bronchopneumonia, monitoring of plasma trough concentrations is recommended during the period of nebulization. Large randomized controlled trials comparing high dose of nebulized colistin methanesulfonate to high dose of intravenous colistin methanesulfonate or to intravenous new β-lactams in HAP/VAP due to multidrug-resistant and extensive drug-resistant gram-negative bacteria are urgently needed.
Collapse
Affiliation(s)
- Matthieu Boisson
- INSERM U1070, Université de Poitiers, UFR de Médecine Pharmacie, Poitiers, France.,Service de Prévention et de Contrôle de l'Infection, Hôpitaux Universitaires de Genève, Genève, Suisse
| | - Adrien Bouglé
- Medicine Sorbonne University, Anaesthesiology and Critical Care, Cardiology Institute, Paris, France.,Department of Anaesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Candela Sole-Lleonart
- Intensive Care Unit, Consorci Hospitalari de Vic (CHV), The University of Vic - Central University of Catalonia (UVic-UCC), Vic, Barcelona, Spain
| | - Jayesh Dhanani
- Department of Intensive care medicine, Centre for Clinical Research, The University of Queensland, The Royal Brisbane and Women's Hospital Herston, Brisbane, Australia
| | - Kostoula Arvaniti
- Intensive Care Unit Department, Papageorgiou Hospital of Thessaloniki, Thessaloniki, Greece
| | - Jordi Rello
- Centro de Investigación Biomédica en Red (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Clinical Research and Innovation in Pneumonia and Sepsis, Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain.,Clinical Research, CHU Nîmes, Université Montpellier-Nîmes, Nîmes, France
| | - Jean-Jacques Rouby
- Department of Anaesthesiology and Critical Care, Medicine Sorbonne University, Multidisciplinary Intensive Care Unit, La Pitié Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Olivier Mimoz
- INSERM U1070 Université de Poitiers, UFR de Médecine Pharmacie and Service des Urgences Adultes & SAMU 86, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | | |
Collapse
|
21
|
How to Manage Pseudomonas aeruginosa Infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:425-445. [DOI: 10.1007/978-3-031-08491-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Bharathi KS, Bhat A, Pruthi G, Simha P. Randomized control study of nebulized colistin as an adjunctive therapy in ventilator-associated pneumonia in pediatric postoperative cardiac surgical population. Ann Card Anaesth 2022; 25:435-440. [DOI: 10.4103/aca.aca_81_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
23
|
Camps-Cortés M, Galdón-Crestermayer L, Solé-Lleonart C. Nursing points of interest when nebulizing antibiotics in ventilated patients. Intensive Crit Care Nurs 2021; 69:103168. [PMID: 34893398 DOI: 10.1016/j.iccn.2021.103168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | | | - Candela Solé-Lleonart
- Intensive Care Unit, Consorci Hospitalari de Vic (CHV), Vic, Spain; University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain.
| |
Collapse
|