1
|
Lambrechts K, Gouws P, Rip D. Genetic diversity of Listeria monocytogenes from seafood products, its processing environment, and clinical origin in the Western Cape, South Africa using whole genome sequencing. AIMS Microbiol 2024; 10:608-643. [PMID: 39219753 PMCID: PMC11362271 DOI: 10.3934/microbiol.2024029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Listeria monocytogenes is a concern in seafood and its food processing environment (FPE). Several outbreaks globally have been linked to various types of seafood. Genetic profiling of L. monocytogenes is valuable to track bacterial contamination throughout the FPE and in understanding persistence mechanisms, with limited studies from South Africa. Forty-six L. monocytogenes isolates from origins: Fish/seafood products (n = 32) (salmon, smoked trout, fresh hake, oysters), the FPE (n = 6), and clinical (n = 8) were included in this study. Lineage typing, antibiotic susceptibility testing, and screening for two genes (bcrABC and emrC) conferring sanitizer tolerance was conducted. The seafood and FPE isolates originated from seven different factories processing various seafood products with undetermined origin. All clinical isolates were categorized as lineage I, and seafood and FPE isolates were mostly categorized into lineage II (p < 0.01). Seafood and FPE isolates (53%) carried the bcrABC gene cassette and one fish isolate, the emrC gene. A subset, n = 24, was grouped into serotypes, sequence types (STs), and clonal complexes (CCs) with whole genome sequencing (WGS). Eight CCs and ten STs were identified. All clinical isolates belonged to serogroup 4b, hypervirulent CC1. CC121 was the most prevalent in isolates from food and the FPE. All isolates carried Listeria pathogenicity islands (LIPI) 1 and 2. LIPI-3 and LIPI-4 were found in certain isolates. We identified genetic determinants linked to enhanced survival in the FPE, including stress survival islets (SSI) and genes conferring tolerance to sanitizers. SSI-1 was found in 44% isolates from seafood and the FPE. SSI-2 was found in all the ST121 seafood isolates. Isolates (42%) harbored transposon Tn1688_qac (ermC), conferring tolerance to quaternary ammonium compounds. Five plasmids were identified in 13 isolates from seafood and the FPE. This is the first One Health study reporting on L. monocytogenes genetic diversity, virulence and resistance profiles from various types of seafood and its FPE in South Africa.
Collapse
Affiliation(s)
| | | | - Diane Rip
- Department of Food Science, Stellenbosch University, 7602, South Africa
| |
Collapse
|
2
|
Daza Prieto B, Pietzka A, Martinovic A, Ruppitsch W, Zuber Bogdanovic I. Surveillance and genetic characterization of Listeria monocytogenes in the food chain in Montenegro during the period 2014-2022. Front Microbiol 2024; 15:1418333. [PMID: 39149205 PMCID: PMC11324475 DOI: 10.3389/fmicb.2024.1418333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Listeria monocytogenes is an ubiquitous foodborne pathogen that represents a serious threat to public health and the food industry. Methods In this study Whole Genome Sequencing (WGS) was used to characterize 160 L. monocytogenes isolates obtained from 22,593 different food sources in Montenegro during the years 2014-2022. Results Isolates belonged to 21 different clonal complexes (CCs), 22 sequence types (STs) and 73 core genome multilocus sequence types (cgMLST) revealing a high diversity. The most prevalent STs were ST8 (n = 29), ST9 (n = 31), ST121 (n = 19) and ST155 (n = 20). All isolates carried virulence genes (VGs), 111 isolates carried mobile genetic elements (MGEs) (ranging from 1 to 7 MGEs) and 101 isolates carried plasmids (ranging from 1 to 3 plasmids). All isolates carried the intrinsic resistance genes fosX and lin. None of the isolates carried acquired antimicrobial resistance genes (ARGs). Discussion/conclusion Continuous monitoring and surveillance of L. monocytogenes is needed for improving and ameliorating the public health.
Collapse
Affiliation(s)
- Beatriz Daza Prieto
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria, Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Ariane Pietzka
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria, Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Aleksandra Martinovic
- FoodHub - Centre of Excellence for Digitalization of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria, Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
- FoodHub - Centre of Excellence for Digitalization of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
| | - Ivana Zuber Bogdanovic
- FoodHub - Centre of Excellence for Digitalization of Microbial Food Safety Risk Assessment and Quality Parameters for Accurate Food Authenticity Certification, University of Donja Gorica, Podgorica, Montenegro
- Diagnostic Veterinary Laboratory, Podgorica, Montenegro
| |
Collapse
|
3
|
Feodorova VA, Zaitsev SS, Khizhnyakova MA, Lavrukhin MS, Saltykov YV, Zaberezhny AD, Larionova OS. Complete genome of the Listeria monocytogenes strain AUF, used as a live listeriosis veterinary vaccine. Sci Data 2024; 11:643. [PMID: 38886393 PMCID: PMC11183264 DOI: 10.1038/s41597-024-03440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Listeria monocytogenes (Lm) is a highly pathogenic bacterium that can cause listeriosis, a relatively rare food-borne infectious disease that affects farm, domestic, wild animals and humans as well. The infected livestock is the frequent sources of Lm. Vaccination is one of the methods of controlling listeriosis in target farm animals to prevent Lm-associated food contamination. Here we report the complete sequence of the Lm strain AUF attenuated from a fully-virulent Lm strain by ultraviolet irradiation, successfully used since the 1960s as a live whole-cell veterinary vaccine. The de novo assembled genome consists of a circular chromosome of 2,942,932 bp length, including more than 2,800 CDSs, 17 pseudogenes, 5 antibiotic resistance genes, and 56/92 virulence genes. Two wild Lm strains, the EGD and the 10403S that is also used in cancer Immunotherapy, were the closest homologs for the Lm strain AUF. Although all three strains belonged to different sequence types (ST), namely ST12, ST85, and ST1538, they were placed in the same genetic lineage II, CC7.
Collapse
Affiliation(s)
- Valentina A Feodorova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia.
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia.
| | - Sergey S Zaitsev
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Mariya A Khizhnyakova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Maxim S Lavrukhin
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Yury V Saltykov
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Alexey D Zaberezhny
- All-Russian Scientific Research and Technological Institute of Biological Industry, Biocombinat, Moscow, Russia
| | - Olga S Larionova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| |
Collapse
|
4
|
Manqele A, Adesiyun A, Mafuna T, Pierneef R, Moerane R, Gcebe N. Virulence Potential and Antimicrobial Resistance of Listeria monocytogenes Isolates Obtained from Beef and Beef-Based Products Deciphered Using Whole-Genome Sequencing. Microorganisms 2024; 12:1166. [PMID: 38930548 PMCID: PMC11205329 DOI: 10.3390/microorganisms12061166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Listeria monocytogenes is a ubiquitous bacterial pathogen that threatens the food chain and human health. In this study, whole-genome sequencing (WGS) was used for the genomic characterization of L. monocytogenes (n = 24) from beef and beef-based products. Multilocus Sequence Type (MLST) analysis revealed that ST204 of CC204 was the most common sequence type (ST). Other sequence types detected included ST1 and ST876 of CC1, ST5 of CC5, ST9 of CC9, ST88 of CC88, ST2 and ST1430 of CC2, and ST321 of CC321. Genes encoding for virulence factors included complete LIPI-1 (pfrA-hly-plcA-plcB-mpl-actA) from 54% (13/24) of the isolates of ST204, ST321, ST1430, and ST9 and internalin genes inlABC that were present in all the STs. All the L. monocytogenes STs carried four intrinsic/natural resistance genes, fosX, lin, norB, and mprF, conferring resistance to fosfomycin, lincosamide, quinolones, and cationic peptides, respectively. Plasmids pLGUG1 and J1776 were the most detected (54% each), followed by pLI100 (13%) and pLM5578 (7%). The prophage profile, vB_LmoS_188, was overrepresented amongst the isolates, followed by LP_101, LmoS_293_028989, LP_030_2_021539, A006, and LP_HM00113468. Listeria genomic island 2 (LGI-2) was found to be present in all the isolates, while Listeria genomic island 3 (LGI-3) was present in a subset of isolates (25%). The type VII secretion system was found in 42% of the isolates, and sortase A was present in all L. monocytogenes genomes. Mobile genetic elements and genomic islands did not harbor any virulence, resistance, or environmental adaptation genes that may benefit L. monocytogenes. All the STs did not carry genes that confer resistance to first-line antibiotics used for the treatment of listeriosis. The characterization of L. monocytogenes in our study highlighted the environmental resistance and virulence potential of L. monocytogenes and the risk posed to the public, as this bacterium is frequently found in food and food processing environments.
Collapse
Affiliation(s)
- Ayanda Manqele
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria 0110, South Africa
| | - Abiodun Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Department of Basic Veterinary Sciences, University of the West Indies, St. Augustine 999183, Trinidad and Tobago
| | - Thendo Mafuna
- Department of Biochemistry, University of Johannesburg, Johannesburg 20062028, South Africa
| | - Rian Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria 0001, South Africa
- SARChI Chair: Marine Microbiomics, microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa
| | - Rebone Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Nomakorinte Gcebe
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria 0110, South Africa
| |
Collapse
|
5
|
Gana J, Gcebe N, Pierneef RE, Chen Y, Moerane R, Adesiyun AA. Whole Genome Sequence Analysis of Listeria monocytogenes Isolates Obtained from the Beef Production Chain in Gauteng Province, South Africa. Microorganisms 2024; 12:1003. [PMID: 38792832 PMCID: PMC11123765 DOI: 10.3390/microorganisms12051003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The study used whole-genome sequencing (WGS) and bioinformatics analysis for the genomic characterization of 60 isolates of Listeria monocytogenes obtained from the beef production chain (cattle farms, abattoirs, and retail outlets) in Gauteng province, South Africa. The sequence types (STs), clonal complexes (CCs), and the lineages of the isolates were determined using in silico multilocus sequence typing (MLST). We used BLAST-based analyses to identify virulence and antimicrobial genes, plasmids, proviruses/prophages, and the CRISPR-Cas system. The study investigated any association of the detected genes to the origin in the beef production chain of the L. monocytogenes isolates. Overall, in 60 isolates of Listeria monocytogenes, there were seven STs, six CCs, forty-four putative virulence factors, two resistance genes, one plasmid with AMR genes, and three with conjugative genes, one CRISPR gene, and all 60 isolates were positive for proviruses/prophages. Among the seven STs detected, ST204 (46.7%) and ST2 (21.7%) were the most prominent, with ST frequency varying significantly (p < 0.001). The predominant CC detected were CC2 (21.7%) and CC204 (46.7%) in lineages I and II, respectively. Of the 44 virulence factors detected, 26 (across Listeria Pathogenicity Islands, LIPIs) were present in all the isolates. The difference in the detection frequency varied significantly (p < 0.001). The two AMR genes (fosX and vga(G)) detected were present in all 60 (100%) isolates of L. monocytogenes. The only plasmid, NF033156, was present in three (5%) isolates. A CRISPR-Cas system was detected in six (10%), and all the isolates carried proviruses/prophages. The source and sample type significantly affected the frequencies of STs and virulence factors in the isolates of L. monocytogenes. The presence of fosX and vga(G) genes in all L. monocytogenes isolates obtained from the three industries of the beef production chain can potentially cause therapeutic implications. Our study, which characterized L. monocytogenes recovered from the three levels in the beef production chain, is the first time genomics was performed on this type of data set in the country, and this provides insights into the health implications of Listeria.
Collapse
Affiliation(s)
- James Gana
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; (J.G.); (R.M.)
- Department of Agricultural Education, Federal College of Education, Kontagora 923101, Niger State, Nigeria
| | - Nomakorinte Gcebe
- Bacteriology Department, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa;
| | - Rian Edward Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa;
- Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria 0001, South Africa
- Microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0001, South Africa
| | - Yi Chen
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 5001 Campus Dr. Room 4E-007/Mailstop HFS-710, College Park, MD 20740, USA;
| | - Rebone Moerane
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; (J.G.); (R.M.)
| | - Abiodun Adewale Adesiyun
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; (J.G.); (R.M.)
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine 685509, Trinidad and Tobago
| |
Collapse
|
6
|
Xu J, Wu S, Liu M, Xiao Z, Peng Y, He H. Prevalence and contamination patterns of Listeria monocytogenes in Pleurotus eryngii (king oyster mushroom) production plants. Front Microbiol 2023; 14:1064575. [PMID: 36778843 PMCID: PMC9912299 DOI: 10.3389/fmicb.2023.1064575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/03/2023] [Indexed: 01/29/2023] Open
Abstract
Listeria monocytogenes is a major foodborne pathogen that is well-known for its high mortality rate upon infection. In recent years, the edible mushroom has also been found to be an important source of L. monocytogenes, but the contamination sources in Pleurotus eryngii (the king oyster mushroom) were unclear. In this study, a total of 203 edible mushrooms and environmental samples from four P. eryngii production plants were obtained. As a result, 29 samples (14.3%) were positive for L. monocytogenes, including eight mushroom samples (13.3%, 8/60) and 21 associated environmental samples (14.7%, 21/143). The contamination of L. monocytogenes in plants A and B was more severe and was likely to originate from the mycelium stimulation machine. The isolates belonged to serogroups II.1 (4b-4d-4e), I.1 (1/2a-3a), and I.2 (1/2c-3c), and multilocus sequence typing (MLST) revealed that these L. monocytogenes strains belonged to five different sequence types (ST3, ST121, ST9, ST87, and ST224). The ST121 and ST3 isolates were only found in plants A and B, respectively. The isolates were carried by hly (29/29, 100%), inlB (23/29, 79.3%), inlA (29/29, 100%), inlC (29/29, 100%), inlJ (29/29, 100%), actA (19/29, 65.5%), iap (29/29, 100%), plcA (26/29, 100%), plcB (29/29, 100%), prfA (27/29, 93.1%), and mpl (29/29, 100%). Further study of inlA sequencing showed that 65.5% of strains (19/29) contained full-length InlA that was required for host cell invasion, whereas the mutation led to premature stop codons (PMSCs) at position 492 (type 6) on inlA alleles. All isolates in this survey were sensitive to gentamicin, kanamycin, sulbactam/ampicillin, trimethoprim-sulfamethoxazole, tetracycline, and doxycycline. The drug with the highest resistance is rifampicin (37.9%), followed by penicillin (24.1%) and ciprofloxacin (10.3%). Most multiply resistant strains are isolated from raw materials and equipment of the P. eryngii processing lines. Our study reflects the contamination patterns and potential risk of L. monocytogenes infection in P. eryngii production plants. The persistence of specific L. monocytogenes isolates (such as ST121 and ST3) may assist with contamination. In accordance with these results, the control of L. monocytogenes should focus on the environmental materials, especially in the mycelium stimulation stage. However, effective Listeria monitoring programs will allow for the improved development of Listeria control measures to minimize cross-contamination in the processing of P. eryngii.
Collapse
Affiliation(s)
- Jiang Xu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China,*Correspondence: Shi Wu,
| | - Ming Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zitian Xiao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yangyang Peng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Huanqing He
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
7
|
Zaitsev SS, Khizhnyakova MA, Feodorova VA. Retrospective Investigation of the Whole Genome of the Hypovirulent Listeria monocytogenes Strain of ST201, CC69, Lineage III, Isolated from a Piglet with Fatal Neurolisteriosis. Microorganisms 2022; 10:microorganisms10071442. [PMID: 35889161 PMCID: PMC9324732 DOI: 10.3390/microorganisms10071442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Listeria monocytogenes (Lm), the causative agent for both human and animal listeriosis, is considered to be a rare but potentially fatal foodborne pathogen. While Lm strains associated with current cases of human listeriosis are now being intensely investigated, our knowledge of this microorganism which has caused listerial infection in the past is still extremely limited. The objective of this study was a retrospective whole-genome sequence analysis of the Lm collection strain, 4/52-1953, isolated in the middle of the 20th century from a piglet with listerial neuroinfection. The multi-locus sequence typing (MLST) analysis based on seven housekeeping genes (abcZ, bglA, cat, dapE, dat, ldh, and lhkA) showed that the Lm strain 4/52-1953 was assigned to the sequence type 201 (ST201), clonal complex 69 (CC69), and phylogenetic lineage III. The strain 4/52-1953, similarly to other ST201 strains, probably originated from the ST9, CC69 via ST157. At least eight different STs, ST69, ST72, ST130, ST136, ST148, ST469, ST769, and ST202, were identified as the descendants of the first generation and a single one, ST2290, was proved to be the descendant of the second generation. Among them there were strains either associated with some sporadic cases of human and animal listerial infection in the course of more than 60 years worldwide or isolated from food samples, fish and dairy products, or migratory birds. Phylogenetic analysis based on whole genomes of all the Lm strains available in the NCBI GenBank (n = 256) demonstrated that the strain 4/52-1953 belonged to minor Cluster I, represented by lineage III only, while two other major Clusters, II and III, were formed by lineages I and II. In the genome of the strain 4/52-1953, 41 virulence-associated genes, including the Listeria pathogenicity island 1 (LIPI-1), and LIPI-2 represented by two internalin genes, the inlA and inlB genes, and five genes related to antibiotic resistance, were found. These findings can help to make the emergence of both hyper- and hypovirulent variants, including those bearing antibiotic resistance genes, more visible and aid the aims of molecular epidemiology as well.
Collapse
Affiliation(s)
- Sergey S Zaitsev
- Federal Research Center for Virology and Microbiology, Branch in Saratov, 410028 Saratov, Russia
| | - Mariya A Khizhnyakova
- Federal Research Center for Virology and Microbiology, Branch in Saratov, 410028 Saratov, Russia
| | - Valentina A Feodorova
- Federal Research Center for Virology and Microbiology, Branch in Saratov, 410028 Saratov, Russia
| |
Collapse
|