1
|
Sharma M, Fadl A, Leask A. Orofacial Complications of the Connective Tissue Disease Systemic Sclerosis. J Dent Res 2024; 103:689-696. [PMID: 38779873 PMCID: PMC11191658 DOI: 10.1177/00220345241249408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Scleroderma (systemic sclerosis, SSc) is an autoimmune fibrosing connective tissue disease of unknown etiology. SSc patients show increased levels of autoantibodies, profibrotic cytokines, and extracellular matrix remodeling enzymes that collectively cause activated (myo)fibroblasts, the effector cell type of fibrosis. Despite these impacts, no disease-modifying therapy exists; individual symptoms are treated on a patient-to-patient basis. SSc research has been principally focused on symptoms observed in the lung and skin. However, SSc patients display significant oral complications that arise due to fibrosis of the not only skin, causing microstomia, but also the gastrointestinal tract, causing acid reflux, and the oral cavity itself, causing xerostomia and gingival recession. Due to these complications, SSc patients have impaired quality of life, including periodontitis, tooth loss, reduced tongue mobility, and malnutrition. Indeed, due to their characteristic oral presentation, SSc patients are often initially diagnosed by dentists. Despite their clinical importance, the oral complications of SSc are severely understudied; high-quality publications on this topic are scant. However, SSc patients with periodontal complications possess increased levels of matrix metalloproteinase-9 and chemokines, such as interleukin-6 and chemokine (C-X-C motif) ligand-4. Although many unsuccessful clinical trials, mainly exploring the antifibrotic effects of anti-inflammatory agents, have been conducted in SSc, none have used oral symptoms, which may be more amenable to anti-inflammatory drugs, as clinical end points. This review summarizes the current state of knowledge regarding oral complications in SSc with the goal of inspiring future research in this extremely important and underinvestigated area.
Collapse
Affiliation(s)
- M. Sharma
- Department of Psychology and Health Studies, University of Saskatchewan, Saskatoon, SK, Canada
| | - A. Fadl
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - A. Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Bongers KS, Massett A, O'Dwyer DN. The Oral-Lung Microbiome Axis in Connective Tissue Disease-Related Interstitial Lung Disease. Semin Respir Crit Care Med 2024; 45:449-458. [PMID: 38626906 DOI: 10.1055/s-0044-1785673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Connective tissue disease-related interstitial lung disease (CTD-ILD) is a frequent and serious complication of CTD, leading to high morbidity and mortality. Unfortunately, its pathogenesis remains poorly understood; however, one intriguing contributing factor may be the microbiome of the mouth and lungs. The oral microbiome, which is a major source of the lung microbiome through recurrent microaspiration, is altered in ILD patients. Moreover, in recent years, several lines of evidence suggest that changes in the oral and lung microbiota modulate the pulmonary immune response and thus may play a role in the pathogenesis of ILDs, including CTD-ILD. Here, we review the existing data demonstrating oral and lung microbiota dysbiosis and possible contributions to the development of CTD-ILD in rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis, and systemic lupus erythematosus. We identify several areas of opportunity for future investigations into the role of the oral and lung microbiota in CTD-ILD.
Collapse
Affiliation(s)
- Kale S Bongers
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Angeline Massett
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - David N O'Dwyer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
3
|
Russo E, Bellando-Randone S, Carboni D, Fioretto BS, Romano E, Baldi S, El Aoufy K, Ramazzotti M, Rosa I, Lepri G, Di Gloria L, Pallecchi M, Bruni C, Melchiorre D, Guiducci S, Manetti M, Bartolucci GL, Matucci-Cerinic M, Amedei A. The differential crosstalk of the skin-gut microbiome axis as a new emerging actor in systemic sclerosis. Rheumatology (Oxford) 2024; 63:226-234. [PMID: 37154625 DOI: 10.1093/rheumatology/kead208] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/29/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023] Open
Abstract
OBJECTIVES We characterized the microbiota in SSc, focusing on the skin-oral-gut axis and the serum and faecal free fatty acid (FFA) profile. METHODS Twenty-five SSc patients with ACA or anti-Scl70 autoantibodies were enrolled. The microbiota of faecal, saliva and superficial epidermal samples was assessed through next-generation sequencing analysis. GC-MS was used to quantify faecal and serum FFAs. Gastrointestinal symptoms were investigated with the University of California Los Angeles Scleroderma Clinical Trial Consortium Gastrointestinal Tract Instrument (UCLA GIT-2.0) questionnaire. RESULTS The ACA+ and anti-Scl70+ groups displayed different cutaneous and faecal microbiota profiles. The classes of cutaneous Sphingobacteriia and Alphaproteobacteria, the faecal phylum Lentisphaerae, the levels of the classes Lentisphaeria and Opitutae, and the genus NA-Acidaminococcaceae were significantly higher in faecal samples from the ACA+ patients than in samples from the anti-Scl70+ patients. The cutaneous Sphingobacteria and the faecal Lentisphaerae were significantly correlated (rho = 0.42; P = 0.03). A significant increase in faecal propionic acid was observed in ACA+ patients. Moreover, all levels of faecal medium-chain FFAs and hexanoic acids were significantly higher in the ACA+ group than in the anti-Scl70+ group (P < 0.05 and P < 0.001, respectively). In the ACA+ group, the analysis of the serum FFA levels showed an increasing trend in valeric acid. CONCLUSION Different microbiota signatures and FFA profiles were found for the two groups of patients. Despite being in different body districts, the cutaneous Sphingobacteria and faecal Lentisphaerae appear interdependent.
Collapse
Affiliation(s)
- Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Division of Rheumatology, Scleroderma Unit, AOU Careggi, Florence, Italy
| | - Davide Carboni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Division of Rheumatology, Scleroderma Unit, AOU Careggi, Florence, Italy
| | | | - Eloisa Romano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Khadija El Aoufy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical Science "Mario Serio", University of Florence, Florence, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gemma Lepri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Division of Rheumatology, Scleroderma Unit, AOU Careggi, Florence, Italy
| | - Leandro Di Gloria
- Department of Biomedical, Experimental and Clinical Science "Mario Serio", University of Florence, Florence, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Division of Rheumatology, Scleroderma Unit, AOU Careggi, Florence, Italy
- Rheumatology, University Hospital of Zürich, Zürich, Switzerland
| | - Daniela Melchiorre
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gian Luca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Division of Rheumatology, Scleroderma Unit, AOU Careggi, Florence, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, San Raffaele Hospital, Milan, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Kim S, Park HJ, Lee SI. The Microbiome in Systemic Sclerosis: Pathophysiology and Therapeutic Potential. Int J Mol Sci 2022; 23:ijms232416154. [PMID: 36555792 PMCID: PMC9853331 DOI: 10.3390/ijms232416154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disease with unknown etiology characterized by multi-organ fibrosis. Despite substantial investigation on SSc-related cellular and molecular mechanisms, effective therapies are still lacking. The skin, lungs, and gut are the most affected organs in SSc, which act as physical barriers and constantly communicate with colonized microbiota. Recent reports have documented a unique microbiome signature, which may be the pathogenic trigger or driver of SSc. Since gut microbiota influences the efficacy and toxicity of oral drugs, evaluating drug-microbiota interactions has become an area of interest in disease treatment. The existing evidence highlights the potential of the microbial challenge as a novel therapeutic option in SSc. In this review, we have summarized the current knowledge about molecular mechanisms of SSc and highlighted the underlying role of the microbiome in SSc pathogenesis. We have also discussed the latest therapeutic interventions using microbiomes in SSc, including drug-microbiota interactions and animal disease models. This review aims to elucidate the pathophysiological connection and therapeutic potential of the microbiome in SSc. Insights into the microbiome will significantly improve our understanding of etiopathogenesis and developing therapeutics for SSc.
Collapse
|
5
|
Bacali C, Vulturar R, Buduru S, Cozma A, Fodor A, Chiș A, Lucaciu O, Damian L, Moldovan ML. Oral Microbiome: Getting to Know and Befriend Neighbors, a Biological Approach. Biomedicines 2022; 10:671. [PMID: 35327473 PMCID: PMC8945538 DOI: 10.3390/biomedicines10030671] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
The oral microbiome, forming a biofilm that covers the oral structures, contains a high number of microorganisms. Biofilm formation starts from the salivary pellicle that allows bacterial adhesion-colonization-proliferation, co-aggregation and biofilm maturation in a complex microbial community. There is a constant bidirectional crosstalk between human host and its oral microbiome. The paper presents the fundamentals regarding the oral microbiome and its relationship to modulator factors, oral and systemic health. The modern studies of oral microorganisms and relationships with the host benefits are based on genomics, transcriptomics, proteomics and metabolomics. Pharmaceuticals such as antimicrobials, prebiotics, probiotics, surface active or abrasive agents and plant-derived ingredients may influence the oral microbiome. Many studies found associations between oral dysbiosis and systemic disorders, including autoimmune diseases, cardiovascular, diabetes, cancers and neurodegenerative disorders. We outline the general and individual factors influencing the host-microbial balance and the possibility to use the analysis of the oral microbiome in prevention, diagnosis and treatment in personalized medicine. Future therapies should take in account the restoration of the normal symbiotic relation with the oral microbiome.
Collapse
Affiliation(s)
- Cecilia Bacali
- Department of Prosthodontics and Dental Materials, “Iuliu Hatieganu” University of Medicine and Pharmacy, 32 Clinicilor St., 400006 Cluj-Napoca, Romania; (C.B.); (S.B.)
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 6 Pasteur St., 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Smaranda Buduru
- Department of Prosthodontics and Dental Materials, “Iuliu Hatieganu” University of Medicine and Pharmacy, 32 Clinicilor St., 400006 Cluj-Napoca, Romania; (C.B.); (S.B.)
| | - Angela Cozma
- 4th Medical Department, University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj-Napoca, 18 Republicii St., 400015 Cluj-Napoca, Romania;
| | - Adriana Fodor
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “Iuliu Hatieganu” University of Medicine and Pharmacy, 2-4 Clinicilor St., 400012 Cluj-Napoca, Romania;
| | - Adina Chiș
- Department of Molecular Sciences, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 6 Pasteur St., 400349 Cluj-Napoca, Romania;
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Ondine Lucaciu
- Department of Oral Health, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania;
| | - Laura Damian
- Department of Rheumatology, Emergency Clinical County Hospital Cluj, Centre for Rare Autoimmune and Autoinflammatory Diseases, 2-4 Clinicilor St., 400006 Cluj-Napoca, Romania;
- CMI Reumatologie Dr. Damian, 6-8 Petru Maior St., 400002 Cluj-Napoca, Romania
| | - Mirela Liliana Moldovan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12, I. Creanga St., 400010 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Editorial for Special Issue: Microbial and Autoimmune Disease. Microorganisms 2021; 9:microorganisms9091800. [PMID: 34576696 PMCID: PMC8465632 DOI: 10.3390/microorganisms9091800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 12/01/2022] Open
|