1
|
Chen X, Zhu N, Yang G, Guo X, Sun S, Leng F, Wang Y. Role of cspA on the Preparation of Escherichia coli Competent Cells by Calcium Chloride Method. J Basic Microbiol 2024; 64:e2400113. [PMID: 38924123 DOI: 10.1002/jobm.202400113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
One of the fundamental techniques in genetic engineering is the creation of Escherichia coli competent cells using the CaCl2 method. However, little is known about the mechanism of E. coli competence formation. We have previously found that the cspA gene may play an indispensable role in the preparation of E. coli DH5α competent cells through multiomics analysis. In the present study, the cellular localization, physicochemical properties, and function of the protein expressed by the cspA gene were analyzed. To investigate the role of the cspA gene in E. coli transformation, cspA-deficient mutant was constructed by red homologous recombination. The growth, transformation efficiency, and cell morphology of the cspA-deficient strain and E. coli were compared. It was found that there were no noticeable differences in growth and morphology between E. coli and the cspA-deficient strain cultured at 37°C, but the mutant exhibited increased transformation efficiencies compared to E. coli DH5α for plasmids pUC19, pET-32a, and p1304, with enhancements of 2.23, 2.24, and 3.46 times, respectively. It was proved that cspA gene is an important negative regulatory gene in the CaCl2 preparation of competent cells.
Collapse
Affiliation(s)
- Xiaona Chen
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Guangrui Yang
- Gansu Zhongshang Food Quality Test and Detection Co. Ltd., Lanzhou, China
- Gansu Business Science and Technology Institute Co. Ltd., Lanzhou, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Shangchen Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
2
|
Xiong L, Yu H, Zeng K, Li Y, Wei Y, Li H, Ji X. Whole genome analysis of Pseudomonas mandelii SW-3 and the insights into low-temperature adaptation. Folia Microbiol (Praha) 2024; 69:775-787. [PMID: 38051419 DOI: 10.1007/s12223-023-01117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
Pseudomonas mandelii SW-3, isolated from the Napahai plateau wetland, can survive in cold environments. The mechanisms underlying the survival of bacteria in low temperatures and high altitudes are not yet fully understood. In this study, the whole genome of SW-3 was sequenced to identify the genomic features that may contribute to survival in cold environments. The results showed that the genome size of strain SW-3 was 6,538,059 bp with a GC content of 59%. A total of 67 tRNAs, a 34,110 bp prophage sequence, and a large number of metabolic genes were found. Based on 16S rRNA gene phylogeny and average nucleotide identity analysis among P. mandelii, SW-3 was identified as a strain belonging to P. mandelii. In addition, we clarified the mechanisms by which SW-3 survived in a cold environment, providing a basis for further investigation of host-phage interaction. P. mandelii SW-3 showed stress resistance mechanisms, including glycogen and trehalose metabolic pathways, and antisense transcriptional silencing. Furthermore, cold shock proteins and glucose 6-phosphate dehydrogenase may play pivotal roles in facilitating adaptation to cold environmental conditions. The genome-wide analysis provided us with a deeper understanding of the cold-adapted bacterium.
Collapse
Affiliation(s)
- Lingling Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Hang Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Kun Zeng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yanmei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Haiyan Li
- Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Xiuling Ji
- Medical School, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
3
|
Huang J, Li S, She TT, Liu J, Mo YJ, Lian WH, Zhang DY, Dong L, Li WJ. Pedobacter deserti sp. nov., a novel species isolated from desert soil. Antonie Van Leeuwenhoek 2024; 117:98. [PMID: 38981868 DOI: 10.1007/s10482-024-01997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
An aerobic, Gram-stain-negative bacterium, designated as SYSU D00382T, was sourced from soil of Gurbantunggut Desert, PR China. The strain was short-rod-shaped, oxidase-positive and catalase-negative, with yellow-colored, convex, round, and smooth colonies on TSA plate. Growth and proliferation occurred at 4-37 °C (optimal: 28-30 °C), pH 5.0-8.0 (optimal: pH 6.0-7.0) and NaCl concentration of 0-2.5% (optimal: 0-0.5%). The 16S rRNA gene based phylogenetic assessment showed that SYSU D00382T belonged to the genus Pedobacter, and was most closely related to Pedobacter ginsengisoli Gsoil 104T with similarity of 97.7%. The genomic DNA G+C content of SYSU D00382T was 46.4%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between SYSU D00382T and P. ginsengisoli Gsoil 104T were 75.7% and 17.5%, respectively. The main polar lipid was phosphatidylethanolamine. The major fatty acids (> 5%) were iso-C15:0, iso-C17:0 3-OH, summed features 3 and 9. The sole respiratory quinone identified was MK-7. The phylogeny based on 16S rRNA gene and whole-genome sequences revealed that SYSU D00382T formed a robust lineage with P. ginsengisoli Gsoil 104T. Based on phenotypic, phylogenetic and genotypic data, a novel specie named Pedobacter deserti sp. nov. is proposed. The type strain is SYSU D00382T (= CGMCC 1.18627T = MCCC 1K04972T = KCTC 82279T).
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, People's Republic of China
| | - Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, People's Republic of China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Ting-Ting She
- Guangdong University of Education, Guangzhou, 510275, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, People's Republic of China
| | - Yi-Jun Mo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, People's Republic of China
| | - Dong-Ya Zhang
- Microbiome Research Center, Moon (Guangzhou) Biotech Co., Ltd., Guangzhou, 510700, People's Republic of China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, People's Republic of China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
4
|
Mao Y, Yang Y, Lin F, Chu H, Zhou L, Han J, Zhou J, Su X. Functional Analysis of Stress Resistance of Bacillus cereus SCL10 Strain Based on Whole-Genome Sequencing. Microorganisms 2024; 12:1168. [PMID: 38930550 PMCID: PMC11206075 DOI: 10.3390/microorganisms12061168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
A Gram-positive, rod-shaped, aerobic, motile, and spore-forming bacterium, designated SCL10, was isolated from Acaudina molpadioides exposure to Co-60 radiation. In this study, whole-genome sequencing was performed to identify the strain as Bacillus cereus and functional characterization, with a focus on stress resistance. The genome of the B. cereus SCL10 strain was sequenced and assembled, revealing a size of 4,979,182 bp and 5167 coding genes. The genes involved in biological functions were annotated by using the GO, COG, KEGG, NR, and Swiss-Prot databases. The results showed that genes related to alkyl hydroperoxide reductase (ahpC, ahpF), DNA-binding proteins from starved cells (dps), spore and biofilm formation (spoVG, spo0A, gerP), cold shock-like protein (cspC, cspE), ATP-dependent chaperone (clpB), and photolyase, small, acid-soluble spore protein (SASP) and DNA repair protein (recA, radD) could explain the stress resistance. These findings suggest that antioxidant activity, sporulation, biofilm formation, and DNA protection may be considered as the main resistance mechanisms under exposure to radiation in the B. cereus SCL10 strain.
Collapse
Affiliation(s)
- Yanzhen Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Ye Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Fu Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Hanyu Chu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Lijie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315832, China; (Y.M.); (Y.Y.); (F.L.); (H.C.); (L.Z.); (J.H.); (X.S.)
- School of Marine Science, Ningbo University, Ningbo 315832, China
| |
Collapse
|
5
|
Zhou B, Xiong Y, Nevo Y, Kahan T, Yakovian O, Alon S, Bhattacharya S, Rosenshine I, Sinai L, Ben-Yehuda S. Dormant bacterial spores encrypt a long-lasting transcriptional program to be executed during revival. Mol Cell 2023; 83:4158-4173.e7. [PMID: 37949068 DOI: 10.1016/j.molcel.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Sporulating bacteria can retreat into long-lasting dormant spores that preserve the capacity to germinate when propitious. However, how the revival transcriptional program is memorized for years remains elusive. We revealed that in dormant spores, core RNA polymerase (RNAP) resides in a central chromosomal domain, where it remains bound to a subset of intergenic promoter regions. These regions regulate genes encoding for most essential cellular functions, such as rRNAs and tRNAs. Upon awakening, RNAP recruits key transcriptional components, including sigma factor, and progresses to express the adjacent downstream genes. Mutants devoid of spore DNA-compacting proteins exhibit scattered RNAP localization and subsequently disordered firing of gene expression during germination. Accordingly, we propose that the spore chromosome is structured to preserve the transcriptional program by halting RNAP, prepared to execute transcription at the auspicious time. Such a mechanism may sustain long-term transcriptional programs in diverse organisms displaying a quiescent life form.
Collapse
Affiliation(s)
- Bing Zhou
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Yifei Xiong
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center at the Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Tamar Kahan
- Bioinformatics Unit, Faculty of Medicine, The Hebrew University of Jerusalem, 9112001 Jerusalem, Israel
| | - Oren Yakovian
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel; The Racah Institute of Physics, Faculty of Science, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Sima Alon
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Saurabh Bhattacharya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel
| | - Lior Sinai
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel.
| | - Sigal Ben-Yehuda
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, P.O.B. 12272, 9112001 Jerusalem, Israel.
| |
Collapse
|
6
|
Ramón A, Esteves A, Villadóniga C, Chalar C, Castro-Sowinski S. A general overview of the multifactorial adaptation to cold: biochemical mechanisms and strategies. Braz J Microbiol 2023; 54:2259-2287. [PMID: 37477802 PMCID: PMC10484896 DOI: 10.1007/s42770-023-01057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Cold environments are more frequent than people think. They include deep oceans, cold lakes, snow, permafrost, sea ice, glaciers, cold soils, cold deserts, caves, areas at elevations greater than 3000 m, and also artificial refrigeration systems. These environments are inhabited by a diversity of eukaryotic and prokaryotic organisms that must adapt to the hard conditions imposed by cold. This adaptation is multifactorial and includes (i) sensing the cold, mainly through the modification of the liquid-crystalline membrane state, leading to the activation of a two-component system that transduce the signal; (ii) adapting the composition of membranes for proper functions mainly due to the production of double bonds in lipids, changes in hopanoid composition, and the inclusion of pigments; (iii) producing cold-adapted proteins, some of which show modifications in the composition of amino acids involved in stabilizing interactions and structural adaptations, e.g., enzymes with high catalytic efficiency; and (iv) producing ice-binding proteins and anti-freeze proteins, extracellular polysaccharides and compatible solutes that protect cells from intracellular and extracellular ice. However, organisms also respond by reprogramming their metabolism and specifically inducing cold-shock and cold-adaptation genes through strategies such as DNA supercoiling, distinctive signatures in promoter regions and/or the action of CSPs on mRNAs, among others. In this review, we describe the main findings about how organisms adapt to cold, with a focus in prokaryotes and linking the information with findings in eukaryotes.
Collapse
Affiliation(s)
- Ana Ramón
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Adriana Esteves
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Carolina Villadóniga
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Cora Chalar
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
7
|
Exploring RNA-protein interaction between two mesophilic bacteria: an in silico approach to discern detailed molecular level interaction in cold shock response. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01352-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
8
|
Xia W, Zong J, Zheng K, Wang Y, Zhang D, Guo S, Sun G. DgCspC gene overexpression improves cotton yield and tolerance to drought and salt stress comparison with wild-type plants. FRONTIERS IN PLANT SCIENCE 2022; 13:985900. [PMID: 36147229 PMCID: PMC9485673 DOI: 10.3389/fpls.2022.985900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Drought and high salinity are key limiting factors for cotton quality and yield. Therefore, research is increasingly focused on mining effective genes to improve the stress resistance of cotton. Few studies have demonstrated that bacterial Cold shock proteins (Csps) overexpression can enhance plants stress tolerance. Here, we first identified and cloned a gene DgCspC encoding 88 amino acids (aa) with an open reading frame (ORF) of 264 base pairs (bp) from a Deinococcus gobiensis I-0 with high resistance to strong radiation, drought, and high temperature. In this study, heterologous expression of DgCspC promoted cotton growth, as exhibited by larger leaf size and higher plant height than the wild-type plants. Moreover, transgenic cotton lines showed higher tolerance to drought and salts stresses than wild-type plants, as revealed by susceptibility phenotype and physiological indexes. Furthermore, the enhanced stresses tolerance was attributed to high capacity of cellular osmotic regulation and ROS scavenging resulted from DgCspC expression modulating relative genes upregulated to cause proline and betaine accumulation. Meanwhile, photosynthetic efficiency and yield were significantly higher in the transgenic cotton than in the wild-type control under field conditions. This study provides a newly effective gene resource to cultivate new cotton varieties with high stresses resistance and yield.
Collapse
Affiliation(s)
- Wenwen Xia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Jiahang Zong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Kai Zheng
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongling Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Barák I. Special Issue " Bacillus subtilis as a Model Organism to Study Basic Cell Processes". Microorganisms 2021; 9:microorganisms9122459. [PMID: 34946061 PMCID: PMC8708606 DOI: 10.3390/microorganisms9122459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Imrich Barák
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia
| |
Collapse
|