1
|
Adusumilli SH, Alikkam Veetil A, Choudhury C, Chattopadhyaya B, Behera D, Bachhawat AK. Glucose 6-phosphate dehydrogenase variants increase NADPH pools for yeast isoprenoid production. FEBS Open Bio 2024; 14:410-425. [PMID: 38124687 PMCID: PMC10909971 DOI: 10.1002/2211-5463.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/01/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
Isoprenoid biosynthesis has a significant requirement for the co-factor NADPH. Thus, increasing NADPH levels for enhancing isoprenoid yields in synthetic biology is critical. Previous efforts have focused on diverting flux into the pentose phosphate pathway or overproducing enzymes that generate NADPH. In this study, we instead focused on increasing the efficiency of enzymes that generate NADPH. We first established a robust genetic screen that allowed us to screen improved variants. The pentose phosphate pathway enzyme, glucose 6-phosphate dehydrogenase (G6PD), was chosen for further improvement. Different gene fusions of G6PD with the downstream enzyme in the pentose phosphate pathway, 6-phosphogluconolactonase (6PGL), were created. The linker-less G6PD-6PGL fusion displayed the highest activity, and although it had slightly lower activity than the WT enzyme, the affinity for G6P was higher and showed higher yields of the diterpenoid sclareol in vivo. A second gene fusion approach was to fuse G6PD to truncated HMG-CoA reductase, the rate-limiting step and also the major NADPH consumer in the pathway. Both domains were functional, and the fusion also yielded higher sclareol levels. We simultaneously carried out a rational mutagenesis approach with G6PD, which led to the identification of two mutants of G6PD, N403D and S238QI239F, that showed 15-25% higher activity in vitro. The diterpene sclareol yields were also increased in the strains overexpressing these mutants relative to WT G6PD, and these will be very beneficial in synthetic biology applications.
Collapse
Affiliation(s)
- Sri Harsha Adusumilli
- Department of Biological SciencesIndian Institute of Science Education and Research MohaliManauliIndia
- Present address:
Department of Chemical and Biological EngineeringUniversity of Wisconsin‐MadisonWIUSA
| | - Anuthariq Alikkam Veetil
- Department of Biological SciencesIndian Institute of Science Education and Research MohaliManauliIndia
- Present address:
Department of Chemistry and Biomedical SciencesLinnaeus universityKalmarSweden
| | | | - Banani Chattopadhyaya
- Department of Biological SciencesIndian Institute of Science Education and Research MohaliManauliIndia
| | - Diptimayee Behera
- Department of Earth and Environmental SciencesIndian Institute of Science Education and Research MohaliManauliIndia
| | - Anand Kumar Bachhawat
- Department of Biological SciencesIndian Institute of Science Education and Research MohaliManauliIndia
| |
Collapse
|
2
|
Morales-Luna L, Vázquez-Bautista M, Martínez-Rosas V, Rojas-Alarcón MA, Ortega-Cuellar D, González-Valdez A, Pérez de la Cruz V, Arreguin-Espinosa R, Rodríguez-Bustamante E, Rodríguez-Flores E, Hernández-Ochoa B, Gómez-Manzo S. Fused Enzyme Glucose-6-Phosphate Dehydrogenase::6-Phosphogluconolactonase (G6PD::6PGL) as a Potential Drug Target in Giardia lamblia, Trichomonas vaginalis, and Plasmodium falciparum. Microorganisms 2024; 12:112. [PMID: 38257939 PMCID: PMC10819308 DOI: 10.3390/microorganisms12010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Several microaerophilic parasites such as Giardia lamblia, Trichomonas vaginalis, and Plasmodium falciparum are major disease-causing organisms and are responsible for spreading infections worldwide. Despite significant progress made in understanding the metabolism and molecular biology of microaerophilic parasites, chemotherapeutic treatment to control it has seen limited progress. A current proposed strategy for drug discovery against parasitic diseases is the identification of essential key enzymes of metabolic pathways associated with the parasite's survival. In these organisms, glucose-6-phosphate dehydrogenase::6-phosphogluconolactonase (G6PD:: 6PGL), the first enzyme of the pentose phosphate pathway (PPP), is essential for its metabolism. Since G6PD:: 6PGL provides substrates for nucleotides synthesis and NADPH as a source of reducing equivalents, it could be considered an anti-parasite drug target. This review analyzes the anaerobic energy metabolism of G. lamblia, T. vaginalis, and P. falciparum, with a focus on glucose metabolism through the pentose phosphate pathway and the significance of the fused G6PD:: 6PGL enzyme as a therapeutic target in the search for new drugs.
Collapse
Affiliation(s)
- Laura Morales-Luna
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (L.M.-L.); (M.V.-B.); (V.M.-R.); (M.A.R.-A.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Montserrat Vázquez-Bautista
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (L.M.-L.); (M.V.-B.); (V.M.-R.); (M.A.R.-A.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Víctor Martínez-Rosas
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (L.M.-L.); (M.V.-B.); (V.M.-R.); (M.A.R.-A.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Miriam Abigail Rojas-Alarcón
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (L.M.-L.); (M.V.-B.); (V.M.-R.); (M.A.R.-A.)
- Programa de Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico;
| | - Roberto Arreguin-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.A.-E.); (E.R.-B.); (E.R.-F.)
| | - Eduardo Rodríguez-Bustamante
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.A.-E.); (E.R.-B.); (E.R.-F.)
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Eden Rodríguez-Flores
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.A.-E.); (E.R.-B.); (E.R.-F.)
| | - Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City 06720, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (L.M.-L.); (M.V.-B.); (V.M.-R.); (M.A.R.-A.)
| |
Collapse
|
3
|
Paul A, Roy PK, Babu NK, Dhumal TT, Singh S. Leishmania donovani 6-phosphogluconolactonase: Crucial for growth and host infection? Microb Pathog 2023; 178:106082. [PMID: 36958644 DOI: 10.1016/j.micpath.2023.106082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
The hexose monophosphate shunt is a crucial pathway in a variety of microorganisms owing to its vital metabolic products and intermediates such as NADPH, ribose 5-phosphate etc. The enzyme 6-phosphogluconolactonase catalyses the second step of this pathway, converting 6-phosphogluconolactone to 6-phosphogluconic acid. This enzyme has been known to have a significant involvement in growth, pathogenesis and sensitivity to oxidative stress in bacterial and protozoal pathogens. However, the functional role of kinetoplastid Leishmania donovani 6-phospohogluconolactonase (Ld6PGL) remains unexplored. L. donovani is the second largest parasitic killer and causative organism of life threatening visceral leishmaniasis. To understand its possible functional role in the parasite, the alleles of Ld6PGL were sequentially knocked-out followed by gene complementation. The Ld6PGL mutant cell lines showed decrease in transcriptional and translational expression as well as in the enzyme activity. In case of Ld6PGL null mutants, approximately 2-fold reduction was observed in growth. The null mutants also showed ∼38% decrease in infectivity, which recovered to ∼15% on complementation. Scanning electron microscopy showed a marked decrease in flagellar length in the knockout parasites. When treated with the standard drug miltefosine, the mutant strains had no significant change in the drug sensitivity. However, the Ld6PGL mutants were more susceptible to oxidative stress. Our findings suggest that 6PGL is required for parasite growth and infection but it is not essential.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Pradyot Kumar Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Neerupudi Kishore Babu
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Tushar Tukaram Dhumal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062, Punjab, India.
| |
Collapse
|
4
|
Kolářová I, Florent I, Valigurová A. Parasitic Protists: Diversity of Adaptations to a Parasitic Lifestyle. Microorganisms 2022; 10:microorganisms10081560. [PMID: 36013978 PMCID: PMC9414628 DOI: 10.3390/microorganisms10081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Affiliation(s)
- Iva Kolářová
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Albertov 6, 128 44 Prague, Czech Republic
- Correspondence: (I.K.); (I.F.); (A.V.)
| | - Isabelle Florent
- Parasites and Free-Living Protists (UMR7245 CNRS-MNHN, MCAM), Department “Adaptations of Living Organisms”, National Museum of Natural History, CEDEX 05, 75231 Paris, France
- Correspondence: (I.K.); (I.F.); (A.V.)
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Correspondence: (I.K.); (I.F.); (A.V.)
| |
Collapse
|