1
|
Bhat AA, Shakeel A, Waqar S, Handoo ZA, Khan AA. Microbes vs. Nematodes: Insights into Biocontrol through Antagonistic Organisms to Control Root-Knot Nematodes. PLANTS (BASEL, SWITZERLAND) 2023; 12:451. [PMID: 36771535 PMCID: PMC9919851 DOI: 10.3390/plants12030451] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Root-knot nematodes (Meloidogyne spp.) are sedentary endoparasites that cause severe economic losses to agricultural crops globally. Due to the regulations of the European Union on the application of nematicides, it is crucial now to discover eco-friendly control strategies for nematode management. Biocontrol is one such safe and reliable method for managing these polyphagous nematodes. Biocontrol agents not only control these parasitic nematodes but also improve plant growth and induce systemic resistance in plants against a variety of biotic stresses. A wide range of organisms such as bacteria, fungi, viruses, and protozoans live in their natural mode as nematode antagonists. Various review articles have discussed the role of biocontrol in nematode management in general, but a specific review on biocontrol of root-knot nematodes is not available in detail. This review, therefore, focuses on the biocontrol of root-knot nematodes by discussing their important known antagonists, modes of action, and interactions.
Collapse
Affiliation(s)
- Adil Ameen Bhat
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Adnan Shakeel
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Sonia Waqar
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Zafar Ahmad Handoo
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA, ARS, Northeast Area, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Abrar Ahmed Khan
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
2
|
Vera-Morales M, López Medina SE, Naranjo-Morán J, Quevedo A, Ratti MF. Nematophagous Fungi: A Review of Their Phosphorus Solubilization Potential. Microorganisms 2023; 11:137. [PMID: 36677427 PMCID: PMC9867276 DOI: 10.3390/microorganisms11010137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/07/2023] Open
Abstract
Nematophagous fungi (NF) are a group of diverse fungal genera that benefit plants. The aim of this review is to increase comprehension about the importance of nematophagous fungi and their role in phosphorus solubilization to favor its uptake in agricultural ecosystems. They use different mechanisms, such as acidification in the medium, organic acids production, and the secretion of enzymes and metabolites that promote the bioavailability of phosphorus for plants. This study summarizes the processes of solubilization, in addition to the mechanisms of action and use of NF on crops, evidencing the need to include innovative alternatives for the implementation of microbial resources in management plans. In addition, it provides information to help understand the effect of NF to make phosphorus available for plants, showing how these biological means promote phosphorus uptake, thus improving productivity and yield.
Collapse
Affiliation(s)
- Marcos Vera-Morales
- Escuela de Postgrado, Universidad Nacional de Trujillo, Jr. San Martin 392, Trujillo 13007, Perú
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km. 30.5 vía Perimetral, Guayaquil EC090112, Ecuador
| | - Segundo E. López Medina
- Escuela de Postgrado, Universidad Nacional de Trujillo, Jr. San Martin 392, Trujillo 13007, Perú
| | - Jaime Naranjo-Morán
- Laboratorio de Biotecnología Vegetal, Ingeniería en Biotecnología, Facultad Ciencias de la Vida, Campus María Auxiliadora, Universidad Politécnica Salesiana (UPS), Km 19.5 Vía a la Costa, Guayaquil P.O. Box 09-01-2074, Ecuador
| | - Adela Quevedo
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km. 30.5 vía Perimetral, Guayaquil EC090112, Ecuador
| | - María F. Ratti
- Escuela Superior Politécnica del Litoral, ESPOL, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km. 30.5 vía Perimetral, Guayaquil EC090112, Ecuador
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Campus Gustavo Galindo Km. 30.5 vía Perimetral, Guayaquil EC090608, Ecuador
| |
Collapse
|
3
|
Pérez-Anzúrez G, Olmedo-Juárez A, von-Son de Fernex E, Alonso-Díaz MÁ, Delgado-Núñez EJ, López-Arellano ME, González-Cortázar M, Zamilpa A, Ocampo-Gutierrez AY, Paz-Silva A, Mendoza-de Gives P. Arthrobotrys musiformis (Orbiliales) Kills Haemonchus contortus Infective Larvae (Trichostronylidae) through Its Predatory Activity and Its Fungal Culture Filtrates. Pathogens 2022; 11:1068. [PMID: 36297125 PMCID: PMC9609027 DOI: 10.3390/pathogens11101068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Haemonchus contortus (Hc) is a parasite affecting small ruminants worldwide. Arthrobotrys musiformis (Am) is a nematode-trapping fungi that captures, destroys and feeds on nematodes. This study assessed the predatory activity (PA) and nematocidal activity (NA) of liquid culture filtrates (LCF) of Am against Hc infective larvae (L3), and additionally, the mycochemical profile (MP) was performed. Fungal identification was achieved by traditional and molecular procedures. The PA of Am against HcL3 was performed in water agar plates. Means of non-predated larvae were recorded and compared with a control group without fungi. LCF/HcL3 interaction was performed using micro-tittering plates. Two media, Czapek−Dox broth (CDB) and sweet potato dextrose broth (SPDB) and three concentrations, were assessed. Lectures were performed after 48 h interaction. The means of alive and dead larvae were recorded and compared with proper negative controls. The PA assessment revealed 71.54% larval reduction (p < 0.01). The highest NA of LCF was found in CDB: 93.42, 73.02 and 51.61%, at 100, 50 and 25 mg/mL, respectively (p < 0.05). Alkaloids and saponins were identified in both media; meanwhile, coumarins were only identified in CDB. The NA was only found in CDB, but not in SPDB. Coumarins could be responsible for the NA.
Collapse
Affiliation(s)
- Gustavo Pérez-Anzúrez
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock, INIFAP-SADER, Morelos, Jiutepec CP 62550, Mexico
- Production Sciences and Animal Health, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Coyoacán CP 04510, Mexico
| | - Agustín Olmedo-Juárez
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock, INIFAP-SADER, Morelos, Jiutepec CP 62550, Mexico
| | - Elke von-Son de Fernex
- Tropical Livestock Center, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Martínez de la Torre CP 93600, Mexico
| | - Miguel Ángel Alonso-Díaz
- Tropical Livestock Center, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Martínez de la Torre CP 93600, Mexico
| | - Edgar Jesús Delgado-Núñez
- Faculty of Agricultural, Livestock and Environmental Sciences, Autonomous University of the State of Guerrero, Iguala de la Independencia CP 40040, Mexico
| | - María Eugenia López-Arellano
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock, INIFAP-SADER, Morelos, Jiutepec CP 62550, Mexico
| | - Manasés González-Cortázar
- South Biomedical Research Center, Social Security Mexican Institute (CIBIS-IMSS), Xochitepec CP 62790, Mexico
| | - Alejandro Zamilpa
- South Biomedical Research Center, Social Security Mexican Institute (CIBIS-IMSS), Xochitepec CP 62790, Mexico
| | - Ana Yuridia Ocampo-Gutierrez
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock, INIFAP-SADER, Morelos, Jiutepec CP 62550, Mexico
| | - Adolfo Paz-Silva
- Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, 27142 Lugo, Spain
| | - Pedro Mendoza-de Gives
- Laboratory of Helminthology, National Centre for Disciplinary Research in Animal Health and Innocuity (CENID-SAI), National Institute for Research in Forestry, Agriculture and Livestock, INIFAP-SADER, Morelos, Jiutepec CP 62550, Mexico
| |
Collapse
|
4
|
Amphiphysin AoRvs167-Mediated Membrane Curvature Facilitates Trap Formation, Endocytosis, and Stress Resistance in Arthrobotrysoligospora. Pathogens 2022; 11:pathogens11090997. [PMID: 36145429 PMCID: PMC9501185 DOI: 10.3390/pathogens11090997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Bin1/Amphiphysin/Rvs (BAR) domain-containing proteins mediate fundamental cellular processes, including membrane remodeling and endocytosis. Nematode-trapping (NT) fungi can differentiate to form trapping structures through highly reorganized cell membranes and walls. In this study, we identified the NT fungus Arthrobotrys oligospora ortholog of yeast Rvs167 and documented its involvement in membrane bending and endocytosis. We further confirmed that the deletion of AoRvs167 makes the fungus more hypersensitive to osmotic salt (Nacl), higher temperatures (28 to 30 °C), and the cell wall perturbation agent Congo red. In addition, the disruption of AoRvs167 reduced the trap formation capacity. Hence, AoRvs167 may regulate fungal pathogenicity through the integrity of plasma membranes and cell walls.
Collapse
|
5
|
Secondary Metabolites from the Endoparasitic Nematophagous Fungus Harposporium anguillulae YMF 1.01751. Microorganisms 2022; 10:microorganisms10081553. [PMID: 36013971 PMCID: PMC9415808 DOI: 10.3390/microorganisms10081553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
Harposporium anguillulae, an endoparasitic nematophagous fungus (ENF), is a model fungus from which the genus Harposporium was established. It can infect nematodes via ingested conidia. In this paper, the morphology and nematode–fungus interaction between Panagrellus redivivus and H. anguillulae were observed by scanning electron microscopy (SEM). The secondary metabolites of H. anguillulae were also studied. Seven metabolites were purified and identified from an ethyl acetate extract of broth and a methanol extract of mycelium. These include a new polyketone 5-hydroxy-3-(hydroxymethyl)-6-methyl-2H-pyran-2-one (1) and six known metabolites (17R)-17-methylincisterol (2), eburicol (3), ergosterol peroxide (4), terpendole C (5), (3β,5α,9β,22E)-3,5-dihydroxy-ergosta-7,22-dien-6-one (6), and 5α,6β-epoxy-(22E,24R)-ergosta-8,22-diene- 3β,7α-diol (7). These metabolites were assayed for their activity against plant root-knot nematode, Meloidogyne incognita, and the results showed that terpendole C (5) had weak nematicidal activity but also that other compounds did not have evident activity at a concentration of 400 μg mL−1. Compound 1 exhibited an attractive effect towards P. redivivus.
Collapse
|
6
|
Pathogenicity and Metabolites of Purpureocillium lavendulum YMF1.00683 against Meloidogyne incognita. Pathogens 2022; 11:pathogens11070795. [PMID: 35890039 PMCID: PMC9320282 DOI: 10.3390/pathogens11070795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/29/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Purpureocillium lavendulum is a biological control agent with several registered products that can parasitize the eggs and larvae of various pathogenic nematodes. In this study, the pathogenicity and secondary metabolites of the fungus P. lavendulum YMF1.00683 were investigated. The strain YMF1.00683 had infection efficiency against the plant root-knot nematode Meloidogyne incognita. The strain’s process of infecting nematodes was observed under a microscope. Moreover, seven metabolites, including a new sterol (1), were isolated and identified from cultures of YMF1.0068 in Sabouraud’s dextrose agar. A bioassay showed that 5-methoxymethyl-1H-pyrrole-2-carboxaldehyde (7) is toxic to M. incognita and affects the egg hatching. It caused 98.23% mortality in M. incognita and could inhibit 80.78% of the hatching eggs at 400 μg/mL over a period of 96 h. Furthermore, 5-methoxymethyl-1H-pyrrole-2-carboxaldehyde (7) showed a strong avoidance effect at 40 ppm, and its chemotactic index value was −0.37. The results indicate that P. lavendulum could produce active metabolites against M. incognita.
Collapse
|
7
|
Mei X, Wang X, Li G. Pathogenicity and Volatile Nematicidal Metabolites from Duddingtonia flagrans against Meloidogyne incognita. Microorganisms 2021; 9:microorganisms9112268. [PMID: 34835396 PMCID: PMC8624258 DOI: 10.3390/microorganisms9112268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
Plant parasitic nematodes, especially parasitic root-knot nematodes, are one of the most destructive plant pathogens worldwide. The control of plant root-knot nematodes is extremely challenging. Duddingtonia flagrans is a type of nematode-trapping fungi (NTF), which produces three-dimensional adhesive networks to trap nematodes. In this study, the pathogenicity and volatile organic compounds (VOCs) of the NTF D. flagrans against the plant root-knot nematode, Meloidogyne incognita, were investigated. The predatory process of D. flagrans trapping M. incognita was observed using scanning electron microscopy. Gas chromatography-mass spectrometry analysis of the VOCs from D. flagrans led to the identification of 52 metabolites, of which 11 main compounds were tested individually for their activity against M. incognita. Three compounds, cyclohexanamine, cyclohexanone, and cyclohexanol, were toxic to M. incognita. Furthermore, these three VOCs inhibited egg hatching of M. incognita. Cyclohexanamine showed the highest nematicidal activity, which can cause 97.93% mortality of M. incognita at 8.71 µM within 12 h. The number of hatched juveniles per egg mass after 3 days was just 8.44 when treated with 26.14 µM cyclohexanamine. This study is the first to demonstrate the nematicidal activity of VOCs produced by D. flagrans against M. incognita, which indicates that D. flagrans has the potential to biocontrol plant root-knot nematodes.
Collapse
|