1
|
Yang H, Jo H, Kim SH, Yun CS, Park SH, Park DS. Veillonella faecalis sp. nov., a propionic acid-producing bacterium isolated from the faeces of an infant. Antonie Van Leeuwenhoek 2024; 117:50. [PMID: 38472420 DOI: 10.1007/s10482-024-01951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
A strictly anaerobic, Gram-stain-negative, catalase-negative, cocci-shaped, and propionate-producing bacterial strain, named Ds1651T was isolated from the fecal sample collected from a South Korean infant. Through a comparison of 16S rRNA gene sequences, it was revealed that Ds1651T had the highest phylogenetic affinity with Veillonella nakazawae KCTC 25297 T (99.86%), followed by Veillonella infantium KCTC 25370 T (99.80%), and Veillonella dispar KCTC 25309 T (99.73%) in the family Veillonellaceae. Average nucleotide identity values between Ds1651T and three reference species were 95.48% for Veillonella nakazawae KCTC 25297 T, 94.46% for Veillonella infantium KCTC 25370 T, and 92.81% for Veillonella dispar KCTC 25309 T. The G + C content of Ds1651T was 38.58 mol%. Major fermentation end-products were acetic and propionic acids in Trypticase peptone glucose yeast extract broth with 1% (v/v) sodium lactate. The predominant cellular fatty acids that account for more than 10% were summed in Feature 8 (C17:1 ω8c and/or C17:2) and C13:0. Based on the findings from phylogenetic, genomic, phenotypic, and chemotaxonomic studies, we propose that the type strain Ds1651T (= KCTC 25477 T = GDMCC 1.3707 T) represents a novel bacterial species within the genus Veillonella, with the proposed name Veillonella faecalis sp. nov.
Collapse
Affiliation(s)
- Haneol Yang
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea
- Department of Biology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hana Jo
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea
| | - Seung Hyun Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea
| | - Chan-Seok Yun
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea.
| | - Doo-Sang Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, Republic of Korea.
| |
Collapse
|
2
|
Baker JL. Illuminating the oral microbiome and its host interactions: recent advancements in omics and bioinformatics technologies in the context of oral microbiome research. FEMS Microbiol Rev 2023; 47:fuad051. [PMID: 37667515 PMCID: PMC10503653 DOI: 10.1093/femsre/fuad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
The oral microbiota has an enormous impact on human health, with oral dysbiosis now linked to many oral and systemic diseases. Recent advancements in sequencing, mass spectrometry, bioinformatics, computational biology, and machine learning are revolutionizing oral microbiome research, enabling analysis at an unprecedented scale and level of resolution using omics approaches. This review contains a comprehensive perspective of the current state-of-the-art tools available to perform genomics, metagenomics, phylogenomics, pangenomics, transcriptomics, proteomics, metabolomics, lipidomics, and multi-omics analysis on (all) microbiomes, and then provides examples of how the techniques have been applied to research of the oral microbiome, specifically. Key findings of these studies and remaining challenges for the field are highlighted. Although the methods discussed here are placed in the context of their contributions to oral microbiome research specifically, they are pertinent to the study of any microbiome, and the intended audience of this includes researchers would simply like to get an introduction to microbial omics and/or an update on the latest omics methods. Continued research of the oral microbiota using omics approaches is crucial and will lead to dramatic improvements in human health, longevity, and quality of life.
Collapse
Affiliation(s)
- Jonathon L Baker
- Department of Oral Rehabilitation & Biosciences, School of Dentistry, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97202, United States
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA 92037, United States
- Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA 92093, United States
| |
Collapse
|
3
|
Lv M, Zhang J, Deng J, Hu J, Zhong Q, Su M, Lin D, Xu T, Bai X, Li J, Guo X. Analysis of the relationship between the gut microbiota enterotypes and colorectal adenoma. Front Microbiol 2023; 14:1097892. [PMID: 37082183 PMCID: PMC10110881 DOI: 10.3389/fmicb.2023.1097892] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
IntroductionThe essence of enterotypes is to stratify the entire human gut microbiota, and dysregulation of gut microbiota is closely related to the development of colorectal adenoma. Enterotypes may therefore be a useful target for the prevention of colorectal adenoma. However, the relationship between gut microbiota and colorectal adenoma has not been fully elucidated. In this study, we aimed to analyze the differences in gut microbiome composition between adenoma and control populations.MethodsWe recruited 31 patients with colorectal adenoma and 71 non-adenoma controls. Patient demographics, risk factors, fecal samples from each subject were collected and metagenomic sequencing was performed. LEfSe analysis was used to reveal differences in intestinal microbiome composition. Multiple logistic regression analysis was used to determine the association between enterotypes and colorectal adenoma.ResultsThe results showed that Prevotella enterotype (enterotype 4) is only present in adenoma group. Logistic regression analysis showed that Prevotella enterotype was an independent risk factor for colorectal adenoma.DiscussionThe Prevotella enterotype may increase the occurrence of colorectal adenoma through inflammatory association and interference with glucose and lipid metabolism in human body. In conclusion, the differences we observed between different enterotypes add a new potential factor to the development of colorectal adenoma.
Collapse
Affiliation(s)
- Miwei Lv
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- School of Medicine, Xizang Minzu University, Xianyang, China
| | - Jiawei Zhang
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Deng
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiancong Hu
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qinghua Zhong
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingli Su
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dezheng Lin
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tian Xu
- School of Medicine, Xizang Minzu University, Xianyang, China
| | - Xuhao Bai
- School of Medicine, Xizang Minzu University, Xianyang, China
| | - Juan Li
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Juan Li,
| | - Xuefeng Guo
- Department of Endoscopic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Xuefeng Guo,
| |
Collapse
|
4
|
Characterization of the Lower Airways and Oral Microbiota in Healthy Young Persons in the Community. Biomedicines 2023; 11:biomedicines11030841. [PMID: 36979819 PMCID: PMC10045431 DOI: 10.3390/biomedicines11030841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Lower airway dysbiosis contributes to disease pathogenesis in respiratory diseases. However, little is known regarding the microbiota of lower airways or the oral cavity of healthy young persons. To address this gap, 25 healthy persons (24.3 ± 3.3 years; 52% females; no current smokers) underwent bronchoscopy during which bronchial brushing (BB) and bronchoalveolar lavage (BAL) fluid were collected. Prior to the procedure, an oral wash (OW) sample was also obtained. Microbiome analyses (16S rRNA locus) were performed (alpha- and beta-diversity, taxa annotations, and predicted functional metagenomic profiles) according to the airway compartment (BB, BAL, and OW). The greatest microbial richness was observed in OW and the lowest in BB (p < 0.001). Microbial communities differed significantly across compartments (p < 0.001), especially between BB and OW. Taxa analyses showed a significantly higher abundance of Firmicutes (BB: 32.7%; BAL: 31.4%) compared to OW (20.9%) (p < 0.001). Conversely, Proteobacteria predominated in OW (27.9%) as opposed to BB (7.0%) and BAL (12.5%) (p < 0.001), mostly due to a greater abundance of the bacteria in the Haemophilus genus in the OW (p < 0.001). The lower airway microbiota (BB and BAL) is significantly different from the OW microbiota in healthy young persons with respect to microbial diversity, taxa profiles, and predicted function.
Collapse
|
5
|
Du X, Li Q, Tang Z, Yan L, Zhang L, Zheng Q, Zeng X, Chen G, Yue H, Li J, Zhao M, Han YP, Fu X. Alterations of the Gut Microbiome and Fecal Metabolome in Colorectal Cancer: Implication of Intestinal Metabolism for Tumorigenesis. Front Physiol 2022; 13:854545. [PMID: 35600308 PMCID: PMC9116530 DOI: 10.3389/fphys.2022.854545] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
Objective: The gut microbiota and its metabolites are important for host physiological homeostasis, while dysbiosis is related to diseases including the development of cancers such as colorectal cancer (CRC). In this study, we characterized the relationship of an altered gut microbiome with the fecal metabolome in CRC patients in comparison with volunteers having a normal colorectal mucous membrane (NC).Methods: The richness and composition of the microbiota in fecal samples of 30 CRC patients and 36 NC controls were analyzed through 16S rRNA gene sequencing, and the metabolome was determined by ultra-performance liquid chromatography coupled to tandem mass spectrometry. Spearman correlation analysis was to determine the correlation between the gut microbiome and fecal metabolome in CRC patients.Results: There were significant alterations in the gut microbiome and fecal metabolome in CRC patients compared with NC controls. Bacteroidetes, Firmicutes, Actinobacteriota, and Proteobacteria dominated the gut microbial communities at the phylum level in both groups. Compared with NC controls, CRC patients had a lower frequency of Blautia and Lachnospiracaea but a higher abundance of Bacteroides fragilis and Prevotella. Regarding the fecal metabolome, twenty-nine metabolites were identified as having significantly changed, showing increased levels of adrenic acid, decanoic acid, arachidonic acid, and tryptophan but a reduction in various monosaccharides in the fecal samples of CRC patients. Moreover, increased abundance of Bacteroides fragilis was strongly associated with decreased levels of monosaccharides, while Blautia was positively associated with the production of monosaccharides in the fecal samples.Conclusion: These results highlight alterations of gut microbiota in association with certain metabolites in CRC progression, implying potential diagnostic and intervention potential for CRC.
Collapse
Affiliation(s)
- Xinhao Du
- Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qing Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhenzhen Tang
- Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Li Yan
- Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ling Zhang
- Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qiao Zheng
- Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianghao Zeng
- Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Guimei Chen
- Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Huawen Yue
- Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jun Li
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ming Zhao
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiangsheng Fu
- Department of Gastroenterology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- *Correspondence: Xiangsheng Fu,
| |
Collapse
|
6
|
Dame-Teixeira N, de Lima AKA, Do T, Stefani CM. Meta-Analysis Using NGS Data: The Veillonella Species in Dental Caries. FRONTIERS IN ORAL HEALTH 2022; 2:770917. [PMID: 35048071 PMCID: PMC8757819 DOI: 10.3389/froh.2021.770917] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 02/01/2023] Open
Abstract
Objectives: In light of recent technological advances in Next-generation sequencing (NGS) and the accumulation of large, publicly available oral microbiome datasets, the need for meta-analysing data on caries microbiome is becoming feasible and essential. A consensus on the identification of enriched organisms in cariogenic dysbiotic biofilms would be reached. For example, members of the Veillonella genus have been detected in caries biofilms, and may have an underestimated contribution to the dysbiotic process. Hence, we aimed to determine the abundance of Veillonella species in dental caries in studies using NGS data. Materials and Methods: Analysis was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis (registered at PROSPERO: CRD42020204150). Studies investigating microbial composition in saliva, dental biofilm, or carious dentin were included. Six databases and grey literature were searched. Two independent reviewers selected the papers and assessed the methodological quality. Results: Searches retrieved 1,323 titles, from which 38 studies were included in a qualitative synthesis, comprising a total of 1,374 caries and 745 caries-free individuals. Most studies analysed 16S rRNA amplicons, and only 5 studies used shotgun metagenomics and metatranscriptomics. A geographical bias was observed. The methodological quality was downrated in 81.5% of the studies due to the lack of criteria for defining cases and standard criteria used for measurement of the condition in a reliable way. Six studies on early childhood caries (ECC) were meta-analysed, confirming a significant enrichment of Veillonella spp. in caries-associated biofilms (but not saliva) when compared to caries-free controls [mean difference: 2.22 (0.54–3.90); p = 0.01]. Conclusions:Veillonella spp. is more abundant in individuals suffering with ECC when compared to caries-free controls (very low evidence certainty), and should be considered for further studies to observe their metabolism in dental caries. There is an urgent need for a consensus in methodologies used to allow for more rigorous comparison between NGS studies, particularly including clinical data and details of caries diagnosis, as they are currently scarce. Inconsistent reporting on the NGS data affected the cross-study comparison and the biological connexions of the relative abundances on caries microbiome.
Collapse
Affiliation(s)
- Naile Dame-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil.,Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | | | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, United Kingdom
| | - Cristine Miron Stefani
- Department of Dentistry, School of Health Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|