1
|
Tanasă F, Nechifor M, Teacă CA. Essential Oils as Alternative Green Broad-Spectrum Biocides. PLANTS (BASEL, SWITZERLAND) 2024; 13:3442. [PMID: 39683235 DOI: 10.3390/plants13233442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Natural compounds from plants represent suitable options to replace synthetic biocides when employed against microorganisms in various applications. Essential oils (EOs) have attracted increased interest due to their biocompatible and rather innocuous nature, and complex biological activity (fungicide, biocide and anti-inflammatory, antioxidant, immunomodulatory action, etc.). EOs are complex mixtures of derived metabolites with high volatility obtained from various vegetal parts and employed to a great extent in different healthcare (natural cures, nutrition, phyto- and aromatherapy, spices) and cosmetics applications (perfumery, personal and beauty care), as well as in cleaning products, agriculture and pest control, food conservation and active packaging, or even for restauration and preservation of cultural artifacts. EOs can act in synergy with other compounds, organic and synthetic as well, when employed in different complex formulations. This review will illustrate the employment of EOs in different applications based on some of the most recent reports in a systematic and comprehensive, though not exhaustive, manner. Some critical assessments will also be included, as well as some perspectives in this regard.
Collapse
Affiliation(s)
- Fulga Tanasă
- Polyaddition and Photochemistry Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Marioara Nechifor
- Polyaddition and Photochemistry Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| | - Carmen-Alice Teacă
- Center of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica-Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
2
|
Yammine J, Doulgeraki AI, O'Byrne CP, Gharsallaoui A, Chihib NE, Karam L. The impact of different acidic conditions and food substrates on Listeria monocytogenes biofilms development and removal using nanoencapsulated carvacrol. Int J Food Microbiol 2024; 416:110676. [PMID: 38507974 DOI: 10.1016/j.ijfoodmicro.2024.110676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/16/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Listeria monocytogenes biofilms present a significant challenge in the food industry. This study explores the impact of different acidic conditions of culture media and food matrices on the development and removal of biofilms developed on stainless steel surfaces by wild-type (WT) L. monocytogenes strains as well as in two mutant derivatives, ΔsigB and ΔagrA, that have defects in the general stress response and quorum sensing, respectively. Additionally, the study investigates the efficacy of nanoencapsulated carvacrol as an antimicrobial against L. monocytogenes biofilms developed in Tryptic Soy Broth (TSB) culture media acidified to different pH conditions (3.5, 4.5, 5.5, 6.5), and in food substrates (apple juice, strained yogurt, vegetable soup, semi-skimmed milk) having the same pH levels. No biofilm formation was observed for all L. monocytogenes strains at pH levels of 3.5 and 4.5 in both culture media and food substrates. However, at pH 5.5 and 6.5, increased biofilm levels were observed in both the culture media and food substrates, with the WT strain showing significantly higher biofilm formation (3.04-6.05 log CFU cm-2) than the mutant strains (2.30-5.48 log CFU cm-2). For both applications, the nanoencapsulated carvacrol demonstrated more potent antimicrobial activity against biofilms developed at pH 5.5 with 2.23 to 3.61 log reductions, compared to 1.58-2.95 log reductions at pH 6.5, with mutants being more vulnerable in acidic environments. In food substrates, nanoencapsulated carvacrol induced lower log reductions (1.58-2.90) than the ones in TSB (2.02-3.61). These findings provide valuable insights into the impact of different acidic conditions on the development of L. monocytogenes biofilms on stainless steel surfaces and the potential application of nanoencapsulated carvacrol as a biofilm control agent in food processing environments.
Collapse
Affiliation(s)
- Jina Yammine
- Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Agapi I Doulgeraki
- Laboratory of Food Microbiology and Hygiene, Department of Food Science & Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Conor P O'Byrne
- Bacterial Stress Response Group, Microbiology, School of Biological & Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Adem Gharsallaoui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Nour-Eddine Chihib
- Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, Lille, France
| | - Layal Karam
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Toreno G, Zucconi L, Caneva G, Meloni P, Isola D. Recolonization dynamics of marble monuments after cleaning treatments: A nine-year follow-up study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169350. [PMID: 38103606 DOI: 10.1016/j.scitotenv.2023.169350] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The prevention and control of biological patinas on outdoor stone monuments represent a demanding challenge for the conservation of cultural heritage also due to some microorganisms, particularly resistant to treatments, such as black meristematic fungi, an eco-physiological group well known for its tolerance to extreme conditions. Even if several methods and eco-friendly products have been proposed as new alternatives, traditional biocides are still far from being completely replaced. Recolonization is a natural process that occurs sooner or later after cleaning. The time that elapses until its occurrence can vary considerably depending on environmental conditions and the used products; unfortunately, the papers describing the effect of treatments over time are rare. This work aims to shed light on the recolonization process of marble surfaces in the ancient monumental cemetery of Bonaria (Cagliari) after nine years from treatments, evaluating the long-term efficiency of two different cleaning methods, namely dimethyl sulfoxide-based gel (DMSO-based gel) and Biotin T (a didecyldimethylammonium chloride-based product-). In this context, the microflora present before treatments and in the following years was assessed by culture-based methods and identified by molecular techniques, with attention on black meristematic fungi, which were used as reference for the most resistant lithobiontic organisms. Different environmental parameters, such as temperature, exposition, dominant winds, and rainfall, were considered, and infrared thermography, portable light microscopy, and image analysis were used. This research evidenced the influence of water availability and lightning in recolonization processes, the transition from the pioneer fungal community versus more resistant black fungal species after Biotin T treatment, and the long-lasting efficiency of the DMSO-based gel. These findings prove that this low-impact method deserves more attention in the conservation of outdoor marble monuments, emphasizing the importance of long-term studies.
Collapse
Affiliation(s)
- Georgia Toreno
- Superintendency of Archaeology, Fine Arts and Landscape for the metropolitan city of Cagliari and the Provinces of Oristano and South Sardinia, Italy.
| | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy.
| | - Giulia Caneva
- Department of Sciences, Roma Tre University, 00146 Rome, Italy.
| | - Paola Meloni
- Department of Mechanical, Chemical and Materials Engineering (DIMCM), University of Cagliari, 09123 Cagliari, Italy; Laboratorio Colle di Bonaria, University of Cagliari, 09125 Cagliari, Italy.
| | - Daniela Isola
- Department of Sciences, Roma Tre University, 00146 Rome, Italy; Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|
4
|
Tsouggou N, Oikonomou A, Papadimitriou K, Skandamis PN. 16S and 18S rDNA Amplicon Sequencing Analysis of Aesthetically Problematic Microbial Mats on the Walls of the Petralona Cave: The Use of Essential Oils as a Cleaning Method. Microorganisms 2023; 11:2681. [PMID: 38004693 PMCID: PMC10673238 DOI: 10.3390/microorganisms11112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The presence of microbial communities on cave walls and speleothems is an issue that requires attention. Traditional cleaning methods using water, brushes, and steam can spread the infection and cause damage to the cave structures, while chemical agents can lead to the formation of toxic compounds and damage the cave walls. Essential oils (EOs) have shown promising results in disrupting the cell membrane of bacteria and affecting their membrane permeability. In this study, we identified the microorganisms forming unwanted microbial communities on the walls and speleothems of Petralona Cave using 16S and 18S rDNA amplicon sequencing approaches and evaluated the efficacy of EOs in reducing the ATP levels of these ecosystems. The samples exhibited a variety of both prokaryotic and eukaryotic microorganisms, including Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, the SAR supergroup, Opisthokonta, Excavata, Archaeplastida, and Amoebozoa. These phyla are often found in various habitats, including caves, and contribute to the ecological intricacy of cave ecosystems. In terms of the order and genus taxonomy, the identified biota showed abundances that varied significantly among the samples. Functional predictions were also conducted to estimate the differences in expressed genes among the samples. Oregano EO was found to reduce ATP levels by 87% and 46% for black and green spots, respectively. Consecutive spraying with cinnamon EO further reduced ATP levels, with reductions of 89% for black and 88% for green spots. The application of a mixture solution caused a significant reduction up to 96% in ATP levels of both areas. Our results indicate that EOs could be a promising solution for the treatment of microbial communities on cave walls and speleothems.
Collapse
Affiliation(s)
- Natalia Tsouggou
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| | - Alexandra Oikonomou
- Ephorate of Palaeoanthropology and Speleology, Hellenic Republic Ministry of Culture and Sports, Ardittou 34b, 11636 Athens, Greece;
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| |
Collapse
|
5
|
Bactericidal Properties of Low-Density Polyethylene (LDPE) Modified with Commercial Additives Used for Food Protection in the Food Industry. ENVIRONMENTS 2022. [DOI: 10.3390/environments9070084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study investigated the influence of commercially available food preservatives: Natamax® (containing natamycin) and Nisaplin® (containing nisin) on the antimicrobial properties of LDPE film, commonly used for food packaging. Studies have shown that the addition of 3% Natamax® or, alternatively, the addition of 5% Nisaplin® provides an LDPE film with effective antimicrobial protection. The applied biocides did not significantly affect the strength and rheological properties of LDPE. However, differences in optical properties were observed. The transparency of the samples decreased slightly with the addition of 3% or 5% Natamax® (by approx. 1% and 3%, respectively). A significant change was observed in the film haze, the addition of 5% Natamax® increased this parameter by approx. 80%, while 5% Nisaplin® increased it by approx. 19%. Both Natamax® and Nisaplin® agents can be successfully used to manufacture food packaging materials with antimicrobial protection. Natamax® showed a stronger bactericidal effect, while Nisaplin® changed other properties less significantly.
Collapse
|
6
|
Yao N, Xu Q, He JK, Pan M, Hou ZF, Liu DD, Tao JP, Huang SY. Evaluation of Origanum vulgare Essential Oil and Its Active Ingredients as Potential Drugs for the Treatment of Toxoplasmosis. Front Cell Infect Microbiol 2021; 11:793089. [PMID: 34881197 PMCID: PMC8645793 DOI: 10.3389/fcimb.2021.793089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 12/22/2022] Open
Abstract
Toxoplasma gondii is a serious hazard to public health and animal husbandry. Due to the current dilemma of treatment of toxoplasmosis, it is urgent to find new anti-T. gondii drugs to treat toxoplasmosis. In this study, the anti-T. gondii activity of Origanum vulgare essential oil (Ov EO) was firstly studied, and then, carvanol (Ca), the main ingredient of Ov EO was evaluated using the MTT assay on human foreskin fibroblast (HFF) cells in vitro. The cytotoxicity was evaluated using the MTT assay on HFF cells. The CC50 of Ov EO and Ca was 134.9 and 43.93 μg/ml, respectively. Both of them exhibited anti-parasitic activity, and inhibited the growth of T. gondii in a dose-dependent manner. For the inhibition effect, Ca was better than Ov EO at the same concentration, the IC50 of Ov EO and Ca was 16.08 and 7.688 μg/ml, respectively. In addition, treatment with Ca, was found to change the morphology of T. gondii tachyzoites and made their shapes curl up. These results showed that Ca was able to inhibit the proliferation of T. gondii by reducing invasion, which may be due to its detrimental effect on the mobility of tachyzoites. Our results indicated that Ca could be a potential new and effective drug for treating toxoplasmosis.
Collapse
Affiliation(s)
- Na Yao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Qiong Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Jia-Kang He
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Zhao-Feng Hou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Dan-Dan Liu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Jian-Ping Tao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|