1
|
Buzzanca D, Chiarini E, Alessandria V. Arcobacteraceae: An Exploration of Antibiotic Resistance Featuring the Latest Research Updates. Antibiotics (Basel) 2024; 13:669. [PMID: 39061351 PMCID: PMC11273800 DOI: 10.3390/antibiotics13070669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The Arcobacteraceae bacterial family includes species isolated from animals and related food products. Moreover, these species have been found in other ecological niches, including water. Some species, particularly Arcobacter butzleri and Arcobacter cryaerophilus, have been isolated from human clinical cases and linked to gastrointestinal symptoms. The presence of antibiotic-resistant strains is a concern for public health, considering the possible zoonoses and foodborne infections caused by contaminated food containing bacteria resistant to antibiotic treatments. This review aims to highlight the importance of antibiotic resistance in Arcobacter spp. isolates from several sources, including information about antibiotic classes to which this bacterium has shown resistance. Arcobacter spp. demonstrated a wide spectrum of antibiotic resistance, including several antibiotic resistance genes. Antibiotic resistance genomic traits include efflux pumps and mutations in antibiotic target proteins. The literature shows a high proportion of Arcobacter spp. that are multidrug-resistant. However, studies in the literature have primarily focused on the evaluation of antibiotic resistance in A. butzleri and A. cryaerophilus, as these species are frequently isolated from various sources. These aspects underline the necessity of studies focused on several Arcobacter species that could potentially be isolated from several sources.
Collapse
Affiliation(s)
- Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini nr.2, 10095 Grugliasco, Italy; (E.C.); (V.A.)
| | | | | |
Collapse
|
2
|
Botta C, Buzzanca D, Chiarini E, Chiesa F, Rubiola S, Ferrocino I, Fontanella E, Rantsiou K, Houf K, Alessandria V. Microbial contamination pathways in a poultry abattoir provided clues on the distribution and persistence of Arcobacter spp. Appl Environ Microbiol 2024; 90:e0029624. [PMID: 38647295 PMCID: PMC11107157 DOI: 10.1128/aem.00296-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
The consumption of contaminated poultry meat is a significant threat for public health, as it implicates in foodborne pathogen infections, such as those caused by Arcobacter. The mitigation of clinical cases requires the understanding of contamination pathways in each food process and the characterization of resident microbiota in the productive environments, so that targeted sanitizing procedures can be effectively implemented. Nowadays these investigations can benefit from the complementary and thoughtful use of culture- and omics-based analyses, although their application in situ is still limited. Therefore, the 16S-rRNA gene-based sequencing of total DNA and the targeted isolation of Arcobacter spp. through enrichment were performed to reconstruct the environmental contamination pathways within a poultry abattoir, as well as the dynamics and distribution of this emerging pathogen. To that scope, broiler's neck skin and caeca have been sampled during processing, while environmental swabs were collected from surfaces after cleaning and sanitizing. Metataxonomic survey highlighted a negligible impact of fecal contamination and a major role of broiler's skin in determining the composition of the resident abattoir microbiota. The introduction of Arcobacter spp. in the environment was mainly conveyed by this source rather than the intestinal content. Arcobacter butzleri represented one of the most abundant species and was extensively detected in the abattoir by both metataxonomic and enrichment methods, showing higher prevalence than other more thermophilic Campylobacterota. In particular, Arcobacter spp. was recovered viable in the plucking sector with high frequency, despite the adequacy of the sanitizing procedure.IMPORTANCEOur findings have emphasized the persistence of Arcobacter spp. in a modern poultry abattoir and its establishment as part of the resident microbiota in specific environmental niches. Although the responses provided here are not conclusive for the identification of the primary source of contamination, this biogeographic assessment underscores the importance of monitoring Arcobacter spp. from the early stages of the production chain with the integrative support of metataxonomic analysis. Through such combined detection approaches, the presence of this pathogen could be soon regarded as hallmark indicator of food safety and quality in poultry slaughtering.
Collapse
Affiliation(s)
- Cristian Botta
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Elisabetta Chiarini
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Francesco Chiesa
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Selene Rubiola
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | | | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| |
Collapse
|
3
|
Sabotič J, Janež N, Volk M, Klančnik A. Molecular structures mediating adhesion of Campylobacter jejuni to abiotic and biotic surfaces. Vet Microbiol 2023; 287:109918. [PMID: 38029692 DOI: 10.1016/j.vetmic.2023.109918] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Microaerophilic, Gram-negative Campylobacter jejuni is the causative agent of campylobacteriosis, the most common bacterial gastrointestinal infection worldwide. Adhesion is the crucial first step in both infection or interaction with the host and biofilm formation, and is a critical factor for bacterial persistence. Here we describe the proteins and other surface structures that promote adhesion to various surfaces, including abiotic surfaces, microorganisms, and animal and human hosts. In addition, we provide insight into the distribution of adhesion proteins among strains from different ecological niches and highlight unexplored proteins involved in C. jejuni adhesion. Protein-protein, protein-glycan, and glycan-glycan interactions are involved in C. jejuni adhesion, with different factors contributing to adhesion to varying degrees under different circumstances. As adhesion is essential for survival and persistence, it represents an interesting target for C. jejuni control. Knowledge of the adhesion process is incomplete, as different molecular and functional aspects have been studied for different structures involved in adhesion. Therefore, it is important to strive for an integration of different approaches to obtain a clearer picture of the adhesion process on different surfaces and to consider the involvement of proteins, glycoconjugates, and polysaccharides and their cooperation.
Collapse
Affiliation(s)
- Jerica Sabotič
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Nika Janež
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Manca Volk
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia.
| |
Collapse
|
4
|
Gungor C, Hizlisoy H, Ertas Onmaz N, Gundog DA, Barel M, Disli HB, Dishan A, Al S, Yildirim Y, Gonulalan Z. Profile of Aliarcobacter spp. from edible giblets: Genetic diversity, antibiotic resistance, biofilm formation. Int J Food Microbiol 2023; 386:110047. [PMID: 36512969 DOI: 10.1016/j.ijfoodmicro.2022.110047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/10/2022]
Abstract
Aliarcobacter spp. are recognized as emerging foodborne pathogens and consumption of foods contaminated with them can be a hazard to human and animal health. This study was conducted to investigate the prevalence of Aliarcobacter spp. in edible internal organs of different animal species from retail markets and giblet sellers. Additionally, this study was focused on the antimicrobial resistance, virulence profiles, biofilm-forming capabilities, and phylogenetic relationships of obtained isolates. A total of 270 samples were analyzed from which, 28 (10.4 %) were isolated as Aliarcobacter spp. by conventional methods. Within the 28 Aliarcobacter spp. isolates, 17 (60.7 %) were identified as A. butzleri, 10 (35.7 %) were A. cryaerophilus and one (3.5 %) was A. skirrowii by PCR method. The disc diffusion method showed that the highest resistance rate of Aliarcobacter spp. was seen against oxacillin (78.5 %), and 20 (71.4 %) out of the 28 isolates exhibited multidrug resistance (MDR). Out of the 28 isolates, mviN, pldA, tlyA, and hecB virulence genes were detected in 85.7 %, 46.4 %, 46.4 %, and 3.5 %, respectively, but irgA, Cj1349, ciaB, cadF, and hecA genes were not detected. According to the microplate test, 27 (96.4 %) isolates had weak biofilm ability while one A. cryaerophilus isolate (3.6 %) exhibited strong biofilm formation. ERIC-PCR band patterns suggested that isolated Aliarcobacter spp. from giblets, have different contamination sources. The presence of pathogenic and multidrug-resistant Aliarcobacter spp. in food poses a potential risk to public health and control measures throughout the food chain are necessary to prevent the spread of these strains.
Collapse
Affiliation(s)
- Candan Gungor
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye.
| | - Harun Hizlisoy
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Nurhan Ertas Onmaz
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Dursun Alp Gundog
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Mukaddes Barel
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - H Burak Disli
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Adalet Dishan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Serhat Al
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Yeliz Yildirim
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| | - Zafer Gonulalan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
5
|
Effect of Atmospheric Conditions on Pathogenic Phenotypes of Arcobacter butzleri. Microorganisms 2022; 10:microorganisms10122409. [PMID: 36557662 PMCID: PMC9785646 DOI: 10.3390/microorganisms10122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Arcobacter butzleri is an emergent gram-negative enteropathogenic bacterium widespread in different environments and hosts. During the colonization of the gastrointestinal tract, bacteria face a variety of environmental conditions to successfully establish infection in a new host. One of these challenges is the fluctuation of oxygen concentrations encountered not only throughout the host gastrointestinal tract and defences but also in the food industry. Oxygen fluctuations can lead to modulations in the virulence of the bacterium and possibly increase its pathogenic potential. In this sense, eight human isolates of A. butzleri were studied to evaluate the effects of microaerobic and aerobic atmospheric conditions in stressful host conditions, such as oxidative stress, acid survival, and human serum survival. In addition, the effects on the modulation of virulence traits, such as haemolytic activity, bacterial motility, biofilm formation ability, and adhesion and invasion of the Caco-2 cell line, were also investigated. Overall, aerobic conditions negatively affected the susceptibility to oxygen reactive species and biofilm formation ability but improved the isolates' haemolytic ability and motility while other traits showed an isolate-dependent response. In summary, this work demonstrates for the first time that oxygen levels can modulate the potential pathogenicity of A. butzleri, although the response to stressful conditions was very heterogeneous among different strains.
Collapse
|
6
|
Švarcová K, Hofmeisterová L, Švecová B, Šilha D. In Vitro Activity of Water Extracts of Olive Oil against Planktonic Cells and Biofilm Formation of Arcobacter-like Species. Molecules 2022; 27:molecules27144509. [PMID: 35889378 PMCID: PMC9318941 DOI: 10.3390/molecules27144509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Extra-virgin olive oils contain many bioactive substances that are phenolic compounds. The survival of Arcobacter-like strains in non-buffered (WEOO) and buffered (BEOO) extracts of olive oils were studied. Time kill curves of different strains were measured in the environment of olive oil extracts of different grades. The activity of the extracts was also monitored for biofilm formation using the Christensen method. In vitro results revealed that extra-virgin olive oil extracts exhibited the strongest antimicrobial effects, especially non-buffered extracts, which exhibited strain inhibition after only 5 min of exposure. The weakest inhibitory effects were observed for olive oil extracts. A decrease in biofilm formation was observed in the environment of higher WEOO concentrations, although at lower concentrations of extracts, increased biofilm formation occurred due to stress conditions. The dialdehydic forms of oleuropein derivatives, hydroxytyrosol, and tyrosol were the main compounds detected by HPLC-CoulArray. The results indicate that not all olive oils had a similar bactericidal effect, and that bioactivity primarily depended on the content of certain phenolic compounds.
Collapse
Affiliation(s)
- Karolína Švarcová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Š.); (L.H.)
| | - Leona Hofmeisterová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Š.); (L.H.)
| | - Blanka Švecová
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| | - David Šilha
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (K.Š.); (L.H.)
- Correspondence: ; Tel.: +420-466-037-765
| |
Collapse
|
7
|
Salazar-Sánchez A, Baztarrika I, Alonso R, Fernández-Astorga A, Martínez-Ballesteros I, Martinez-Malaxetxebarria I. Arcobacter butzleri Biofilms: Insights into the Genes Beneath Their Formation. Microorganisms 2022; 10:1280. [PMID: 35888999 PMCID: PMC9324650 DOI: 10.3390/microorganisms10071280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/19/2022] Open
Abstract
Arcobacter butzleri, the most prevalent species of the genus, has the demonstrated ability to adhere to various surfaces through biofilm production. The biofilm formation capability has been related to the expression of certain genes, which have not been characterized in A. butzleri. In order to increase the knowledge of this foodborne pathogen, the aim of this study was to assess the role of six biofilm-associated genes in campylobacteria (flaA, flaB, fliS, luxS, pta and spoT) in the biofilm formation ability of A. butzleri. Knockout mutants were constructed from different foodborne isolates, and static biofilm assays were conducted on polystyrene (PS), reinforced glass and stainless steel. Additionally, motility and Congo red binding assays were performed. In general, mutants in flaAB, fliS and luxS showed a decrease in the biofilm production irrespective of the surface; mutants in spoT showed an increase on stainless steel, and mutants in pta and spoT showed a decrease on reinforced glass but an increase on PS. Our work sheds light on the biofilm-related pathogenesis of A. butzleri, although future studies are necessary to achieve a satisfactory objective.
Collapse
Affiliation(s)
- Adrián Salazar-Sánchez
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Itsaso Baztarrika
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Rodrigo Alonso
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Aurora Fernández-Astorga
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
| | - Ilargi Martínez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Irati Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.S.-S.); (I.B.); (R.A.); (A.F.-A.); (I.M.-B.)
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
8
|
Martinez-Malaxetxebarria I, Girbau C, Salazar-Sánchez A, Baztarrika I, Martínez-Ballesteros I, Laorden L, Alonso R, Fernández-Astorga A. Genetic characterization and biofilm formation of potentially pathogenic foodborne Arcobacter isolates. Int J Food Microbiol 2022; 373:109712. [DOI: 10.1016/j.ijfoodmicro.2022.109712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
|
9
|
Švarcová K, Pejchalová M, Šilha D. The Effect of Antibiotics on Planktonic Cells and Biofilm Formation Ability of Collected Arcobacter-like Strains and Strains Isolated within the Czech Republic. Antibiotics (Basel) 2022; 11:antibiotics11010087. [PMID: 35052964 PMCID: PMC8772874 DOI: 10.3390/antibiotics11010087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/07/2022] Open
Abstract
The purpose of this study was to test the in vitro effects of ampicillin, ciprofloxacin, clindamycin, erythromycin, gentamicin, and tetracycline on planktonic cells of Arcobacter-like microorganisms and on their biofilm formation ability. The minimum inhibitory concentrations (MICs) were determined by the microdilution method. Further, biofilm formation ability in the presence of various concentrations of antibiotics was evaluated by a modified Christensen method. Most of the 60 strains exhibited high susceptibility to gentamicin (98.3%), ciprofloxacin (95.0%), and erythromycin (100.0%). High level of resistance was observed to clindamycin and tetracycline with MIC50 and MIC90 in range of 4–32 mg/L and 32–128 mg/L, respectively. Combined resistance to both clindamycin and tetracycline was found in 38.3% of tested strains. In general, higher biofilm formation was observed especially at lower concentrations of antibiotics (0.13–2 mg/L). However, a significant decrease in biofilm formation ability of Pseudarcobacter defluvii LMG 25694 was exhibited with ampicillin and clindamycin at concentrations above 32 or 8 mg/L, respectively. Biofilm formation represents a potential danger of infection and also a risk to human health, in particular due to antimicrobial-resistant strains and the ability to form a biofilm structure at a concentration that is approximately the MIC determined for planktonic cells.
Collapse
|