1
|
Moryl M, Różalski A, de Figueiredo JAP, Palatyńska-Ulatowska A. How Do Phages Disrupt the Structure of Enterococcus faecalis Biofilm? Int J Mol Sci 2023; 24:17260. [PMID: 38139094 PMCID: PMC10744153 DOI: 10.3390/ijms242417260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Biofilms are composed of multicellular communities of microbial cells and their self-secreted extracellular polymeric substances (EPS). The viruses named bacteriophages can infect and lyze bacterial cells, leading to efficient biofilm eradication. The aim of this study was to analyze how bacteriophages disrupt the biofilm structure by killing bacterial cells and/or by damaging extracellular polysaccharides, proteins, and DNA. The use of colorimetric and spectrofluorimetric methods and confocal laser scanning microscopy (CLSM) enabled a comprehensive assessment of phage activity against E. faecalis biofilms. The impact of the phages vB_Efa29212_2e and vB_Efa29212_3e was investigated. They were applied separately or in combination on 1-day and 7-day-old biofilms. Phages 2e effectively inhibited the growth of planktonic cells with a limited effect on the biofilm. They did not notably affect extracellular polysaccharides and proteins; however, they increased DNA levels. Phages 3e demonstrated a potent and dispersing impact on E. faecalis biofilms, despite being slightly less effective than bacteriophages 2e against planktonic cells. Phages 3e reduced the amount of extracellular polysaccharides and increased eDNA levels in both 1-day-old and 7-day-old biofilm cultures. Phage cocktails had a strong antimicrobial effect on both planktonic and biofilm-associated bacteria. A significant reduction in the levels of polysaccharides, proteins, and eDNA in 1-day-old biofilm samples was noted, which confirms that phages interfere with the structure of E. faecalis biofilm by killing bacterial cells and affecting extracellular polymer levels.
Collapse
Affiliation(s)
- Magdalena Moryl
- Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Antoni Różalski
- Department of Biology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | | | - Aleksandra Palatyńska-Ulatowska
- Department of Endodontics, Chair of Conservative Dentistry and Endodontics, Medical University of Lodz, 92-213 Lodz, Poland;
| |
Collapse
|
2
|
Peng Q, Tang X, Dong W, Sun N, Yuan W. A Review of Biofilm Formation of Staphylococcus aureus and Its Regulation Mechanism. Antibiotics (Basel) 2022; 12:antibiotics12010012. [PMID: 36671212 PMCID: PMC9854888 DOI: 10.3390/antibiotics12010012] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria can form biofilms in natural and clinical environments on both biotic and abiotic surfaces. The bacterial aggregates embedded in biofilms are formed by their own produced extracellular matrix. Staphylococcus aureus (S. aureus) is one of the most common pathogens of biofilm infections. The formation of biofilm can protect bacteria from being attacked by the host immune system and antibiotics and thus bacteria can be persistent against external challenges. Therefore, clinical treatments for biofilm infections are currently encountering difficulty. To address this critical challenge, a new and effective treatment method needs to be developed. A comprehensive understanding of bacterial biofilm formation and regulation mechanisms may provide meaningful insights against antibiotic resistance due to bacterial biofilms. In this review, we discuss an overview of S. aureus biofilms including the formation process, structural and functional properties of biofilm matrix, and the mechanism regulating biofilm formation.
Collapse
Affiliation(s)
- Qi Peng
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiaohua Tang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Wanyang Dong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
| | - Ning Sun
- Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
- Correspondence: (N.S.); (W.Y.)
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, China
- Correspondence: (N.S.); (W.Y.)
| |
Collapse
|
3
|
Van der Veken D, Leroy F. Prospects for the applicability of coagulase-negative cocci in fermented-meat products using omics approaches. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Donadu MG, Ferrari M, Mazzarello V, Zanetti S, Kushkevych I, Rittmann SKMR, Stájer A, Baráth Z, Szabó D, Urbán E, Gajdács M. No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results. Pathogens 2022; 11:pathogens11040471. [PMID: 35456146 PMCID: PMC9031815 DOI: 10.3390/pathogens11040471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/18/2023] Open
Abstract
The production of biofilms is a critical factor in facilitating the survival of Staphylococcus spp. in vivo and in protecting against various environmental noxa. The possible relationship between the antibiotic-resistant phenotype and biofilm-forming capacity has raised considerable interest. The purpose of the study was to assess the interdependence between biofilm-forming capacity and the antibiotic-resistant phenotype in 299 Staphylococcus spp. (S. aureus n = 143, non-aureus staphylococci [NAS] n = 156) of environmental origin. Antimicrobial susceptibility testing and detection of methicillin resistance (MR) was performed. The capacity of isolates to produce biofilms was assessed using Congo red agar (CRA) plates and a crystal violet microtiter-plate-based (CV-MTP) method. MR was identified in 46.9% of S. aureus and 53.8% of NAS isolates (p > 0.05), with resistance to most commonly used drugs being significantly higher in MR isolates compared to methicillin-susceptible isolates. Resistance rates were highest for clindamycin (57.9%), erythromycin (52.2%) and trimethoprim-sulfamethoxazole (51.1%), while susceptibility was retained for most last-resort drugs. Based on the CRA plates, biofilm was produced by 30.8% of S. aureus and 44.9% of NAS (p = 0.014), while based on the CV-MTP method, 51.7% of S. aureus and 62.8% of NAS were identified as strong biofilm producers, respectively (mean OD570 values: S. aureus: 0.779±0.471 vs. NAS: 1.053±0.551; p < 0.001). No significant differences in biofilm formation were observed based on MR (susceptible: 0.824 ± 0.325 vs. resistant: 0.896 ± 0.367; p = 0.101). However, pronounced differences in biofilm formation were identified based on rifampicin susceptibility (S: 0.784 ± 0.281 vs. R: 1.239 ± 0.286; p = 0.011). The mechanistic understanding of the mechanisms Staphylococcus spp. use to withstand harsh environmental and in vivo conditions is crucial to appropriately address the therapy and eradication of these pathogens.
Collapse
Affiliation(s)
- Matthew Gavino Donadu
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
| | - Marco Ferrari
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
- Correspondence:
| | - Vittorio Mazzarello
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (V.M.); (S.Z.)
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Wien, Austria;
| | - Anette Stájer
- Department of Periodontology, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62–64, 6720 Szeged, Hungary;
| | - Dóra Szabó
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary;
| | - Edit Urbán
- Department of Medical Microbiology and Immunology, University of Pécs Medical School, Szigeti út 12, 7624 Pécs, Hungary;
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 63, 6720 Szeged, Hungary;
| |
Collapse
|
5
|
Schiffer CJ, Schaudinn C, Ehrmann MA, Vogel RF. SxsA, a novel surface protein mediating cell aggregation and adhesive biofilm formation of Staphylococcus xylosus. Mol Microbiol 2022; 117:986-1001. [PMID: 35072960 DOI: 10.1111/mmi.14884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Abstract
Biofilm formation of staphylococci has been an emerging field of research for many years. However, the underlying molecular mechanisms are still not fully understood, and vary widely between species and strains. The aim of this study was to identify new effectors impacting biofilm formation of two Staphylococcus (S.) xylosus strains. We identified a novel surface protein conferring cell aggregation, adherence to abiotic surfaces and biofilm formation. The S. xylosus surface protein A (SxsA) is a large protein occurring in variable sizes. It lacks sequence similarity to other staphylococcal surface proteins but shows similar structural domain organization and functional features. Upon deletion of sxsA, adherence of S. xylosus strain TMW 2.1523 to abiotic surfaces was completely abolished, and significantly reduced in TMW 2.1023. Macro- and microscopic aggregation assays further showed that TMW 2.1523 sxsA mutants exhibit reduced cell aggregation compared to the wildtype. Comparative genomic analysis revealed that sxsA is part of the core genome of S. xylosus, S. paraxylosus and S. nepalensis and additionally encoded in a small group of S. cohnii and S. saprophyticus strains. This study provides insights into protein-mediated biofilm formation of S. xylosus and identifies a new cell wall-associated protein influencing cell aggregation and biofilm formation.
Collapse
Affiliation(s)
- Carolin J Schiffer
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany.,Lehrstuhl für Mikrobiologie, Technische Universität München, Freising, Germany
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Matthias A Ehrmann
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany.,Lehrstuhl für Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| |
Collapse
|
6
|
Bap-Independent Biofilm Formation in Staphylococcus xylosus. Microorganisms 2021; 9:microorganisms9122610. [PMID: 34946212 PMCID: PMC8708073 DOI: 10.3390/microorganisms9122610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
The biofilm associated protein (Bap) is recognised as the essential component for biofilm formation in Staphylococcus aureus V329 and has been predicted as important for other species as well. Although Bap orthologs are also present in most S. xylosus strains, their contribution to biofilm formation has not yet been demonstrated. In this study, different experimental approaches were used to elucidate the effect of Bap on biofilm formation in S. xylosus and the motif structure of two biofilm-forming S. xylosus strains TMW 2.1023 and TMW 2.1523 was compared to Bap of S. aureus V329. We found that despite an identical structural arrangement into four regions, Bap from S. xylosus differs in key factors to Bap of S. aureus, i.e., isoelectric point of aggregation prone Region B, protein homology and type of repeats. Disruption of bap had no effect on aggregation behavior of selected S. xylosus strains and biofilm formation was unaffected (TMW 2.1023) or at best slightly reduced under neutral conditions (TMW 2.1523). Further, we could not observe any typical characteristics of a S. aureus Bap-positive phenotype such as functional impairment by calcium addition and rough colony morphology on congo red agar (CRA). A dominating role of Bap in cell aggregation and biofilm formation as reported mainly for S. aureus V329 was not observed. In contrast, this work demonstrates that functions of S. aureus Bap cannot easily be extrapolated to S. xylosus Bap, which appears as non-essential for biofilm formation in this species. We therefore suggest that biofilm formation in S. xylosus follows different and multifactorial mechanisms.
Collapse
|