1
|
Vacca M, Celano G, Serale N, Costantino G, Calabrese FM, Calasso M, De Angelis M. Dynamic microbial and metabolic changes during Apulian Caciocavallo cheesemaking and ripening produced according to a standardized protocol. J Dairy Sci 2024; 107:6541-6557. [PMID: 38642657 DOI: 10.3168/jds.2023-24049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/12/2024] [Indexed: 04/22/2024]
Abstract
The microbiota of a cheese play a critical role in influencing its sensory and physicochemical properties. In this study, traditional Apulian Caciocavallo cheeses coming from 4 different dairies in the same area and produced following standardized procedures were examined, as well as the different bulk milks and natural whey starter (NWS) cultures used. Moreover, considering the cheese wheels as the blocks of Caciocavallo cheeses as whole, these were characterized at different layers (i.e., core, under-rind, and rind) of the block using a multi-omics approach. In addition to physical-chemical characterization, culturomics, quantitative PCR, metagenomics, and metabolomics analysis were carried out after salting and throughout the ripening time (2 mo) to investigate major shifts in the succession of the microbiota and flavor development. Culture-dependent and 16S rRNA metataxonomics results clearly clustered samples based on microbiota biodiversity related to the production dairy plant as a result of the use of different NWS or the intrinsic conditions of each production site. At the beginning of the ripening, cheeses were dominated by Lactobacillus, and in 2 dairies (Art and SdC), Streptococcus genera were associated with the NWS. The analysis allowed us to show that although the diversity of identified genera did not change significantly between the rind, under-rind, and core fractions of the same samples, there was an evolution in the relative abundance and absolute quantification, modifying and differentiating profiles during ripening. The real-time PCR, also known as quantitative or qPCR, mainly differentiated the temporal adaptation of those species originating from bulk milks and those provided by NWS. The primary starters detected in NWS and cheeses contributed to the high relative concentration of 1-butanol, 2-butanol, 2-heptanol, 2-butanone, acetoin, delta-dodecalactone, hexanoic acid ethyl ester, octanoic acid ethyl ester, and volatile free fatty acids during ripening, whereas cheeses displaying low abundances of Streptococcus and Lactococcus (dairy Del) had a lower total concentration of acetoin compared with Art and SdC. However, the subdominant strains and nonstarter lactic acid bacteria present in cheeses are responsible for the production of secondary metabolites belonging to the chemical classes of ketones, alcohols, and organic acids, reaffirming the importance and relevance of autochthonous strains of each dairy plant although only considering a delimited production area.
Collapse
Affiliation(s)
- Mirco Vacca
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, via G. Amendola 165/A, 70126, Bari, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, via G. Amendola 165/A, 70126, Bari, Italy.
| | - Nadia Serale
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, via G. Amendola 165/A, 70126, Bari, Italy
| | - Giuseppe Costantino
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, via G. Amendola 165/A, 70126, Bari, Italy
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, via G. Amendola 165/A, 70126, Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, via G. Amendola 165/A, 70126, Bari, Italy.
| | - Maria De Angelis
- Department of Soil, Plant and Food Science (DiSSPA), University of Bari Aldo Moro, via G. Amendola 165/A, 70126, Bari, Italy
| |
Collapse
|
2
|
Lutin J, Dufrene F, Guyot P, Palme R, Achilleos C, Bouton Y, Buchin S. Microbial composition and viability of natural whey starters used in PDO Comté cheese-making. Food Microbiol 2024; 121:104521. [PMID: 38637083 DOI: 10.1016/j.fm.2024.104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 04/20/2024]
Abstract
Natural whey starters (NWS) are cultures with undefined multiple-strains species commonly used to speed up the fermentation process of cheeses. The aim of this study was to explore the diversity and the viability of Comté cheese NWS microbiota. Culture-dependent methods, i.e. plate counting and genotypic characterization, and culture-independent methods, i.e. qPCR, viability-qPCR, fluorescence microscopy and DNA metabarcoding, were combined to analyze thirty-six NWS collected in six Comté cheese factories at two seasons. Our results highlighted that NWS were dominated by Streptococcus thermophilus (ST) and thermophilic lactobacilli. These species showed a diversity of strains based on Rep-PCR. The dominance of Lactobacillus helveticus (LH) over Lactobacillus delbrueckii (LD) varied depending on the factory and the season. This highlighted two types of NWS: the type-ST/LD (LD > LH) and the type-ST/LH (LD < LH). The microbial composition varied depending on cheese factory. One factory was distinguished by its level of culturable microbial groups (ST, enterococci and yeast) and its fungi diversity. The approaches used to estimate the viability showed that most NWS cells were viable. Further investigations are needed to understand the microbial diversity of these NWS.
Collapse
Affiliation(s)
- Jade Lutin
- Comité Interprofessionnel de Gestion du Comté - Unité R&D, Bât. INRAE, F-39800, Poligny, France
| | - Franck Dufrene
- INRAE, Institut Agro, Université de Bourgogne, UMR PAM, F-39800, Poligny, France
| | - Philippe Guyot
- Comité Interprofessionnel de Gestion du Comté - Unité R&D, Bât. INRAE, F-39800, Poligny, France
| | - Romain Palme
- INRAE, Institut Agro, Université de Bourgogne, UMR PAM, F-39800, Poligny, France
| | - Christine Achilleos
- INRAE, Institut Agro, Université de Bourgogne, UMR PAM, F-39800, Poligny, France
| | - Yvette Bouton
- Comité Interprofessionnel de Gestion du Comté - Unité R&D, Bât. INRAE, F-39800, Poligny, France.
| | - Solange Buchin
- INRAE, Institut Agro, Université de Bourgogne, UMR PAM, F-39800, Poligny, France
| |
Collapse
|
3
|
Cruz-O’Byrne R, Gamez-Guzman A, Piraneque-Gambasica N, Aguirre-Forero S. Genomic sequencing in Colombian coffee fermentation reveals new records of yeast species. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Sola L, Quadu E, Bortolazzo E, Bertoldi L, Randazzo CL, Pizzamiglio V, Solieri L. Insights on the bacterial composition of Parmigiano Reggiano Natural Whey Starter by a culture-dependent and 16S rRNA metabarcoding portrait. Sci Rep 2022; 12:17322. [PMID: 36243881 PMCID: PMC9569347 DOI: 10.1038/s41598-022-22207-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/11/2022] [Indexed: 01/10/2023] Open
Abstract
Natural whey starters (NWS) are undefined bacterial communities produced daily from whey of the previous cheese-making round, by application of high temperature. As a result, in any dairy plant, NWS are continuously evolving, undefined mixtures of several strains and/or species of lactic acid bacteria, whose composition and performance strongly depend on the selective pressure acting during incubation. While NWS is critical to assure consistency to cheese-making process, little is known about the composition, functional features, and plant-to-plant fluctuations. Here, we integrated 16S rRNA metabarcoding and culture-dependent methods to profile bacterial communities of 10 NWS sampled in the production area of Parmigiano Reggiano cheese. 16S rRNA metabarcoding analysis revealed two main NWS community types, namely NWS type-H and NWS type-D. Lactobacillus helveticus was more abundant in NWS type-H, whilst Lactobacillus delbrueckii/St. thermophilus in NWS type-D, respectively. Based on the prediction of metagenome functions, NWS type-H samples were enriched in functional pathways related to galactose catabolism and purine metabolism, while NWS type-D in pathways related to aromatic and branched chain amino acid biosynthesis, which are flavor compound precursors. Culture-dependent approaches revealed low cultivability of individual colonies as axenic cultures and high genetic diversity in the pool of cultivable survivors. Co-culturing experiments showed that fermentative performance decreases by reducing the bacterial complexity of inoculum, suggesting that biotic interactions and cross-feeding relationships could take place in NWS communities, assuring phenotypic robustness. Even though our data cannot directly predict these ecological interactions, this study provides the basis for experiments targeted at understanding how selective regime affects composition, bacterial interaction, and fermentative performance in NWS.
Collapse
Affiliation(s)
- Laura Sola
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Emanuele Quadu
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Elena Bortolazzo
- grid.423913.eCentro Ricerche Produzioni Animali, 42121 Reggio Emilia, Italy
| | | | - Cinzia L. Randazzo
- grid.8158.40000 0004 1757 1969Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy ,ProBioEtna Srl, 95123 Catania, Italy
| | - Valentina Pizzamiglio
- grid.433295.aConsorzio del Formaggio Parmigiano Reggiano, 42124 Reggio Emilia, Italy
| | - Lisa Solieri
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy ,NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
5
|
Fermentation of whey protein concentrate by Streptococcus thermophilus strains releases peptides with biological activities. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Priyanka, Bhushan K, Kocher G. Valorisation of whey for fermented beverage production using functional starter yeast. ACTA ALIMENTARIA 2022. [DOI: 10.1556/066.2021.00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Indigenous yeast strains Kluyveromyces marxianus (MH6), K. marxianus (CH1), and Saccharomyces cerevisiae (C1) were screened for whey beverage production. K. marxianus (MH6) showed significantly higher (P < 0.05) fermentation efficiency (15.2%) as compare to other yeast strains. The conditions optimised for whey fermentation were 16 Brix, pH 5.5, 28 °C, and 72 h without agitation. For fermented whey beverage production, fruits viz., kinnow (Daizy), guava (Allahabad safeda), and mango (Safeda) were blended with whey at different ratios viz., 80:20, 70:30, 60:40, and 50:50. All ratios showed significant differences for biochemical and sensory analysis (P < 0.05), out of which ratios 60:40, 70:30, and 60:40 for whey kinnow, whey mango, and whey guava, respectively, were selected. To enhance the flavour of whey beverage, flavouring agents (cinnamon, cardamom, fennel seeds, and apple essence) were added. A panel of judges assessed all whey beverages on a hedonic scale basis, and cardamom whey guava beverage received the highest score of 8.16. The whey beverages were stored under refrigerated conditions after pasteurisation, and the shelf life was assessed to be 15 days. This study conferred that K. marxianus held the potential for fermented whey fruit blend beverages production and these beverages could be an alternative healthy refreshing substitute for synthetic bottled fruit beverages.
Collapse
Affiliation(s)
- Priyanka
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - K. Bhushan
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| | - G.S. Kocher
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|