1
|
Sheng X, Wang J, Zhao L, Yan W, Qian J, Wang Z, Zhang J, Raghavan V. Inactivation mechanism of cold plasma combined with 222 nm ultraviolet for spike protein and its application in disinfecting of SARS-CoV-2. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133458. [PMID: 38215522 DOI: 10.1016/j.jhazmat.2024.133458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible virus that has precipitated a worldwide pandemic of coronavirus disease since 2019. Developing an effective disinfection strategy is crucial to prevent the risk of surface cross-contamination by SARS-CoV-2. This study employed pseudovirus and the receptor-binding domain (RBD) protein of SARS-CoV-2 as models to investigate the spike protein inactivation process and its underlying mechanisms using a novel nonthermal technology. Cold plasma combined with 222 nm ultraviolet (CP+UV) treatment was applied to accelerate the generation of reactive species and enhance sterilization efficiency. The results indicated that the binding activity of RBD protein was completely inhibited at specific concentrations (0.01-0.05 mg/cm2) with corresponding treatment times of 15-30 s. The mechanism potentially involves the reactive species generated by CP+UV, which react with the spike protein RBD of SARS-CoV-2, leading to the loss of SARS-CoV-2 infectivity by causing damage to the β-sheet structure and chemical bonds in the RBD protein. Validated by a biosafety level 3 (BSL3) laboratory, the CP+UV treatment for 30 s could completely inactivate SARS-CoV-2 with a concentration of 19054 ± 1112 TCID50/cm2. Therefore, this study potentially provides a novel disinfection strategy for the inactivation of SARS-CoV-2 on surface cross-contamination.
Collapse
Affiliation(s)
- Xiaowei Sheng
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Luling Zhao
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Yan
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Qian
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaobin Wang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianhao Zhang
- National Center of Meat Quality and Safety Control, Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada
| |
Collapse
|
2
|
Locke H, Bidle KD, Thamatrakoln K, Johns CT, Bonachela JA, Ferrell BD, Wommack KE. Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean. Adv Virus Res 2022; 114:67-146. [PMID: 39492214 DOI: 10.1016/bs.aivir.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus-host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean-the physical, chemical, and biological landscape-influences the likelihood of both virus-host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean.
Collapse
Affiliation(s)
- Hannah Locke
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - Kay D Bidle
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | | | - Christopher T Johns
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | - Juan A Bonachela
- Rutgers Univ., Dept. of Ecology, Evolution & Natural Resources, New Brunswick, NJ, United States
| | - Barbra D Ferrell
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - K Eric Wommack
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States.
| |
Collapse
|
3
|
Chekanov K, Shibzukhova K, Lobakova E, Solovchenko A. Differential Responses to UV-A Stress Recorded in Carotenogenic Microalgae Haematococcus rubicundus, Bracteacoccus aggregatus, and Deasonia sp. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111431. [PMID: 35684204 PMCID: PMC9183108 DOI: 10.3390/plants11111431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 05/11/2023]
Abstract
UV-A is the main ultraviolet component of natural (solar) radiation. Despite it, its effect on phototrophs is studied less than UV-B. Effects of UV-A on photosynthetic apparatus of three carotenoid-producing microalgae were elucidated. Photosynthetic activity was studied using chlorophyll fluorescence analysis. Cell extracts were evaluated by absorbance spectroscopy. On the one hand, there were some common features of three strains. In all cases the changes involved PSII primary photochemistry and antennae size. All strains accumulated UV-absorbing polar compounds. On the other hand, some responses were different. Upregulation of non-photochemical quenching was observed only in B. aggregatus BM5/15, whereas in other cases its level was low. H. rubicundus BM7/13 and Deasonia sp. NAMSU 934/2 accumulated secondary carotenoids, whereas B. aggregatus BM5/15 accumulated primary ones. Microscopic features of the cultures were also different. H. rubicundus BM7/13 and Deasonia sp. NAMSU 934/2 were represented mostly by solitaire cells or small cell clusters, lacking their green color; the cells of B. aggregatus BM5/15 formed aggregates from green cells. Cell aggregation could be considered as an additional UV-protecting mechanism. Finally, the strains differed by their viability. B. aggregatus BM5/15 was most resistant to UV-A, whereas massive cell death was observed in two other cultures.
Collapse
|