1
|
de Oliveira KL, da Silva Oliveira JL, Moraes EA, dos Santos Pires Cavalcante KM, de Oliveira MLM, Alves CR. Cultivation of microalgae Chlorella vulgaris, Monoraphidium sp and Scenedesmus obliquus in wastewater from the household appliance industry for bioremediation and biofuel production. 3 Biotech 2024; 14:294. [PMID: 39529805 PMCID: PMC11550306 DOI: 10.1007/s13205-024-04142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Microalgae Chlorella vulgaris, Scenedesmus obliquus, and Monoraphidium sp were cultivated in effluent from the household appliance industry as an alternative medium for bioremediation due to the high variability of chemical and biological substances in wastewater. The experiments were carried out using biological effluent (BE), chemical effluent (CE), and a combination of the two (MIX). The results showed a maximum biomass yield of 1056 mg/L (± 0.216) in the BE cultivation of the microalga Scenedesmus obliquus, 969 mg/L (± 0.20) in the BE of the microalga Monoraphidium sp. and 468 mg/L (± 0.46) in the CE of Chlorella vulgaris. In addition, they showed N O 3 - removal (100%) in the CE and MIX for cultivation with Chlorella vulgaris and 100% BE and 75% MIX with Monoraphidium sp. For the P O 3 4 - (75.3%, 99% e 97.9%) in the cultures with C. vulgaris BE, CE, and MIX respectively, with Monoraphidium sp. 58% in BE and 42% in CE and MIX. With S. obliquus, 100% removal was observed in all 3 treatments. Metal removal was also observed. The C. vulgaris culture showed lipid contents of 16%, 12%, and 17% for BE, CE, and MIX, respectively. For Monoraphidium sp., 14.5% for BE, 16% for CE, and 14% for MIX. In the culture of S. obliquus, 17%, 15.5%, and 16.5% for BE, CE, and MIX, respectively.
Collapse
Affiliation(s)
- Kelly Lima de Oliveira
- Rede Nordeste de Biotecnologia, Laboratório de Conversão Energética e Inovação, State University of Ceará, Fortaleza, Ceará 60714-903 Brazil
| | - José Lucas da Silva Oliveira
- Departamento de Engenharia de Pesca, Laboratório de Planctologia, Federal University of Ceará, Fortaleza, Ceará 60714-903 Brazil
| | - Egídia Andrade Moraes
- Departamento de Engenharia de Pesca, Laboratório de Planctologia, Federal University of Ceará, Fortaleza, Ceará 60714-903 Brazil
| | | | - Mona Lisa Moura de Oliveira
- Centro de Ciências e Tecnologias, Laboratório de Conversão Energética e Inovação, State University of Ceará, Fortaleza, Ceará 60714-903 Brazil
| | - Carlúcio Roberto Alves
- Rede Nordeste de Biotecnologia, Laboratório de Conversão Energética e Inovação, State University of Ceará, Fortaleza, Ceará 60714-903 Brazil
| |
Collapse
|
2
|
Mkpuma VO, Moheimani NR, Ennaceri H. Effect of light intensity on Chlorella sp. biofilm growth on anaerobically digested food effluents (ADFE). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123015. [PMID: 39471596 DOI: 10.1016/j.jenvman.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
Optimizing light conditions in any culture design for effluent treatment is crucial for maximizing microalgae growth and nutrient uptake. We investigated the impact of low (53 ± 1 μmol m-2 s-1), medium (208 ± 12 μmol m-2 s-1), and high (518 ± 22 μmol m-2 s-1) light intensities on the diffused biofilm-based growth of Chlorella sp. for treating anaerobically digested food effluent (ADFE). The alga grew well across all treatments, irrespective of light intensity. However, biomass yields, and productivity positively correlated with light intensity, with the highest biomass yield (120 g m-2) and productivity (11.6 g m-2 d-1) occurring at high light intensity. Notably, specific growth rates peaked uniformly on day 2 across all treatments, indicating an initial surge in growth. A relatively stable photosynthetic performance occurred under medium light treatment, while stress evidence was noticed particularly after day 4 at high and low light treatments, with higher magnitude seen under low light treatments. Total ammonia nitrogen (TAN) and phosphate removal efficiencies increased with light intensities, reaching 100 % removal at high light after 10 days. Intriguingly, there was a notable enhancement in chemical oxygen demand (COD) removal under low light conditions, being 2.9- and 1.64-fold higher compared to medium and high light intensities, respectively. Despite the superior performance of Chlorella sp. biofilm under high-light conditions in biomass yield and uptake of nutrients, the low-light treatment also achieved remarkable results, indicating that this biofilm design offers enhanced exposure to light. Therefore, this biofilm configuration presents an enticing opportunity for treating ADFE at lower light intensities, potentially minimizing energy consumption while maximizing profitability.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy, and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy, and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia.
| |
Collapse
|
3
|
Huang L, Zhao X, Wu K, Liang C, Liu J, Yang H, Yin F, Wang C, Yang B, Zhang W. Enhancing biomass and lipid accumulation by a novel microalga for unsterilized piggery biogas slurry remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31097-31107. [PMID: 38625472 DOI: 10.1007/s11356-024-33179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
The cost and efficiency of an algal-BS treatment system are determined by the specific microalgal species and BS pretreatment method. This study examines the growth of a novel algae Chlorella sp. YSD-2 and the removal of nutrients from the BS using different pretreatment methods, including dilution ratio and sterilization. The highest biomass production (1.84 g L-1) was achieved in the 1:2 unsterilized biogas slurry, which was 2.03 times higher than that in the sterilized group, as well as higher lipid productivity (17.29 mg L-1 d-1). Nevertheless, the sterilized biogas slurry at a 1:1 dilution ratio exhibited the most notable nutrient-removal efficiency, with COD at 71.97%, TP at 91.32%, and TN at 88.80%. Additionally, the analysis of 16S rRNA sequencing revealed a significant alteration in the indigenous bacterial composition of the biogas slurry by microalgal treatment, with Proteobacteria and Cyanobacteria emerging as the predominant phyla, and unidentified_Cyanobacteria as the primary genus. These findings suggest that Chlorella sp. YSD-2 exhibits favorable tolerance and nutrient-removal capabilities in unsterilized, high-strength biogas slurry, along with high productivity of biomass and lipids. Consequently, these results offer a theoretical foundation for the development of an efficient and economically viable treatment method for algal-BS.
Collapse
Affiliation(s)
- Li Huang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Faculty of Environment and Chemical Engineering, Kunming Metallurgy College, Kunming, 650000, People's Republic of China
| | - Xingling Zhao
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Kai Wu
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Chengyue Liang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Jing Liu
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Hong Yang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Fang Yin
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Changmei Wang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Bin Yang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China
| | - Wudi Zhang
- Faculty of Energy and Environment, Yunnan Normal University, No. 768, Juxian Street, Chenggong DistrictYunnan Province, Kunming, 650500, People's Republic of China.
- Yunnan Research Center of Biogas Technology and Engineering, Kunming, 650500, People's Republic of China.
| |
Collapse
|
4
|
Mkpuma VO, Moheimani NR, Ennaceri H. Biofilm cultivation of chlorella species. MUR 269 to treat anaerobic digestate food effluent (ADFE): Total ammonia nitrogen (TAN) concentrations effect. CHEMOSPHERE 2024; 354:141688. [PMID: 38484996 DOI: 10.1016/j.chemosphere.2024.141688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/06/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Microalgal-based treatment of anaerobic digestate food effluent (ADFE) has been found to be efficient and effective. However, turbidity and high total ammonia nitrogen (TAN)) content of ADFE is a major setback, requiring significant dilution. Although the possibility of growing microalgae in a high-strength ADFE with minimal dilution has been demonstrated in suspension cultures, such effluents remain highly turbid and affect the light path in suspension cultures. Here, the feasibility of growing Chlorella sp.MUR 269 in biofilm to treat ADFE with high TAN concentrations was investigated. Six different TAN concentrations in ADFE were evaluated for their effects on biofilm growth and nutrient removal by Chlorella sp. MUR 269 using the perfused biofilm technique. Biomass yields and productivities of this alga at various TAN concentrations (mg N NH3 L-1) were 55a (108 g m-2 and 9.80 g m-2 d-1)>100b > 200c = 300c = 500c > 1000d. Growth was inhibited, resulting in a 28% reduction in yield of Chlorella biofilm when this alga was grown at 1000 mg N NH3 L-1. A survey of the photosynthetic parameters reveals evidence of stress occurring in the following sequence: 55 < 100<200 < 300<1000. A significant nutrient removal was observed across various TAN concentrations. The removal pattern also followed the concentration gradients except COD, where the highest removal occurred at 500 mg N NH3 L-1. Higher removal rates were seen at higher nutrient concentrations and declined gradually over time. In general, our results indicated that the perfused biofilm strategy is efficient, minimizes water consumption, offers easy biomass harvesting, and better exposure to light. Therefore, it can be suitable for treating turbid and concentrated effluent with minimal treatment to reduce the TAN concentration.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, School of Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Perth, 6150, Australia.
| |
Collapse
|
5
|
Zeng Y, Chen X, Zhu J, Long D, Jian Y, Tan Q, Wang H. Effects of Cu (II) on the Growth of Chlorella vulgaris and Its Removal Efficiency of Pollutants in Synthetic Piggery Digestate. TOXICS 2024; 12:56. [PMID: 38251012 PMCID: PMC10819573 DOI: 10.3390/toxics12010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
C. vulgaris has a positive effect on the removal of nutrients from pig farm biogas slurry. However, swine wastewater often contains heavy metal ions, such as Cu (II), which may have impacts on the nutrient removal performance of C. vulgaris. Additionally, the heavy metal ions in wastewater can be adsorbed by microalgae. In this study, the stress effect of Cu (II) on the growth of Chlorella vulgaris, the Cu (II) removal by microalgae, and the effect of different concentrations of Cu (II) on the nutrient removal efficiency of C. vulgaris in biogas slurries were explored. The results showed that the microalgae biomass of microalgae on the sixth day of the experiment was the highest in the treatment with a Cu (II) concentration of 0.5 mg/L, which was 30.1% higher than that of the 2.5 mg/L group. C. vulgaris had higher removal efficiencies of Cu (II) at a Cu (II) concentration of 0.1~1.5 mg/L. The-OH, C=O, -COOH, and C-O groups on the surface of the algal cells play a significant role in the removal of Cu (II). The removal rates of COD, NH3-N, TN, and TP by C. vulgaris at a Cu (II) concentration of 0.5 mg/L were the highest, which were 89.0%, 53.7%, 69.6%, and 47.3%, respectively.
Collapse
Affiliation(s)
- Yaqiong Zeng
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Xiaoqing Chen
- College of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi 830023, China
| | - Jiaming Zhu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Dingbiao Long
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Yue Jian
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Qiong Tan
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Hao Wang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
6
|
Mkpuma VO, Moheimani NR, Ennaceri H. Commercial paper as a promising carrier for biofilm cultivation of Chlorella sp. for the treatment of anaerobic digestate food effluent (ADFE): Effect on the photosynthetic efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165439. [PMID: 37437632 DOI: 10.1016/j.scitotenv.2023.165439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Microalgal technology is still economically unattractive due to the high cost associated with microalgal cultivation and biomass recovery from conventional suspension cultures. Biofilm-based cultivation is a promising alternative for higher biomass yield and cheap/easy biomass harvesting opportunities. Additionally, using anaerobic digestate food effluent (ADFE) as a nutrient source reduces the cultivation cost and achieves ADFE treatment as an added value. However, the search for locally available, inexpensive, and efficient support materials is still open to research. This study evaluates the potential of commercially available, low-cost papers as support material for biofilm cultivation of Chlorella sp. and treatment of ADFE. Among the four papers screened for microalgal attachment, quill board paper performed better in higher biomass yield and stability throughout the study period. The attached growth study was done in a modular food container vessel, using anaerobic digestate food effluent (ADFE) as a nutrient source and a basal medium as a control. The microalgae grew well on the support material with higher biomass yield and productivity of 108.64 g(DW) m-2 and 9.96 g (DW) m-2 d-1, respectively, in the ADFE medium compared with 85.87 g (DW) m-2 and 4.99 g (DW) m-2 d-1, respectively in the basal medium. Chlorophyll, a fluorescence (ChlF) probe, showed that cell density in the biofilm significantly changes the photosynthetic apparatus of the algae, with evidence of stress observed as the culture progressed. Also, efficient nutrient removal from the ADFE medium was achieved in the 100 %, 85 %, and 40.2 % ratios for ammoniacal nitrogen, phosphate, and chemical oxygen demand (COD). Therefore, using quill board paper as carrier material for microalgal cultivation offers promising advantages, including high biomass production, easy biomass harvesting (by scrapping or rolling the biomass with the paper), and efficient effluent treatment.
Collapse
Affiliation(s)
- Victor Okorie Mkpuma
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| | - Houda Ennaceri
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth 6150, Australia.
| |
Collapse
|
7
|
Liu SJ. Special Issue "Biodegradation and Environmental Microbiomes": Editorial. Microorganisms 2023; 11:1253. [PMID: 37317227 DOI: 10.3390/microorganisms11051253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023] Open
Abstract
The Earth is unique, and we as human beings rely on its air, water, and land [...].
Collapse
Affiliation(s)
- Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
Palafox-Sola MF, Yebra-Montes C, Orozco-Nunnelly DA, Carrillo-Nieves D, González-López ME, Gradilla-Hernández MS. Modeling growth kinetics and community interactions in microalgal cultures for bioremediation of anaerobically digested swine wastewater. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Ziganshina EE, Bulynina SS, Yureva KA, Ziganshin AM. Growth Parameters of Various Green Microalgae Species in Effluent from Biogas Reactors: The Importance of Effluent Concentration. PLANTS (BASEL, SWITZERLAND) 2022; 11:3583. [PMID: 36559695 PMCID: PMC9786779 DOI: 10.3390/plants11243583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The use of liquid waste as a feedstock for cultivation of microalgae can reduce water and nutrient costs and can also be used to treat wastewater with simultaneous production of biomass and valuable products. This study applied strategies to treat diluted anaerobic digester effluent (ADE) as a residue of biogas reactors with moderate (87 ± 0.6 mg L-1; 10% ADE) and elevated NH4+-N levels (175 ± 1.1 mg L-1; 20% ADE). The effect of ADE dilution on the acclimatization of various microalgae was studied based on the analysis of the growth and productivity of the tested green algae. Two species of the genus Chlorella showed robust growth in the 10-20% ADE (with a maximum total weight of 3.26 ± 0.18 g L-1 for C. vulgaris and 2.81 ± 0.10 g L-1 for C. sorokiniana). The use of 10% ADE made it possible to cultivate the strains of the family Scenedesmaceae more effectively than the use of 20% ADE. The growth of Neochloris sp. in ADE was the lowest compared to other microalgal strains. The results of this study demonstrated the feasibility of introducing individual green microalgae into the processes of nutrient recovery from ADE to obtain biomass with a high protein content.
Collapse
|
10
|
Li S, Qu W, Chang H, Li J, Ho SH. Microalgae-driven swine wastewater biotreatment: Nutrient recovery, key microbial community and current challenges. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129785. [PMID: 36007366 DOI: 10.1016/j.jhazmat.2022.129785] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
As a promising technology, the microalgae-driven strategy can achieve environmentally sustainable and economically viable swine wastewater treatment. Currently, most microalgae-based research focuses on remediation improvement and biomass accumulation, while information on the removal mechanisms and dominant microorganisms is emerging but still limited. In this review, the major removal mechanisms of pollutants and pathogenic bacteria are systematically discussed. In addition, the bacterial and microalgal community during the swine wastewater treatment process are summarized. In general, Blastomonas, Flavobacterium, Skermanella, Calothrix and Sedimentibacter exhibit a high relative abundance. In contrast to the bacterial community, the microalgal community does not change much during swine wastewater treatment. Additionally, the effects of various parameters (characteristics of swine wastewater and cultivation conditions) on microalgal growth and current challenges in the microalgae-driven biotreatment process are comprehensively introduced. This review stresses the need to integrate bacterial and microalgal ecology information into the conventional design of full-scale swine wastewater treatment systems and operations. Herein, future research needs are also proposed, which will facilitate the development and operation of a more efficient microalgae-based swine wastewater treatment process.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Wenying Qu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China; College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Haixing Chang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Junfeng Li
- College of Water Conservancy and Architecture Engineering, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
11
|
Larronde-Larretche M, Jin X. The Influence of Forward Osmosis Module Configuration on Nutrients Removal and Microalgae Harvesting in Osmotic Photobioreactor. MEMBRANES 2022; 12:892. [PMID: 36135910 PMCID: PMC9503523 DOI: 10.3390/membranes12090892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Microalgae have attracted great interest recently due to their potential for nutrients removal from wastewater, renewable biodiesel production and bioactive compounds extraction. However, one major challenge in microalgal bioremediation and the algal biofuel process is the high energy cost of separating microalgae from water. Our previous studies demonstrated that forward osmosis (FO) is a promising technology for microalgae harvesting and dewatering due to its low energy consumption and easy fouling control. In the present study, two FO module configurations (side-stream and submerged) were integrated with microalgae (C. vulgaris) photobioreactor (PBR) in order to evaluate the system performance, including nutrients removal, algae harvesting efficiency and membrane fouling. After 7 days of operation, both systems showed effective nutrients removal. A total of 92.9%, 100% and 98.7% of PO4-P, NH3-N and TN were removed in the PBR integrated with the submerged FO module, and 82%, 96% and 94.8% of PO4-P, NH3-N and TN were removed in the PBR integrated with the side-stream FO module. The better nutrients removal efficiency is attributed to the greater algae biomass in the submerged FO-PBR where in situ biomass dewatering was conducted. The side-stream FO module showed more severe permeate flux loss and biomass loss (less dewatering efficiency) due to algae deposition onto the membrane. This is likely caused by the higher initial water flux associated with the side-stream FO configuration, resulting in more foulants being transported to the membrane surface. However, the side-stream FO module showed better fouling mitigation by simple hydraulic flushing than the submerged FO module, which is not convenient for conducting cleaning without interrupting the PBR operation. Taken together, our results suggest that side-stream FO configuration may provide a viable way to integrate with PBR for a microalgae-based treatment. The present work provides novel insights into the efficient operation of a FO-PBR for more sustainable wastewater treatment and effective microalgae harvesting.
Collapse
Affiliation(s)
| | - Xue Jin
- School of Chemical Engineering, Biological Engineering & Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
12
|
Shao H, Sun Y, Jiang X, Hu J, Guo C, Lu C, Guo F, Sun C, Wang Y, Dai C. Towards biomass production and wastewater treatment by enhancing the microalgae-based nutrients recovery from liquid digestate in an innovative photobioreactor integrated with dialysis bag. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115337. [PMID: 35642812 DOI: 10.1016/j.jenvman.2022.115337] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/29/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Microalgae-based nutrients recovery from liquid anaerobic digestate of swine manure has been a hotspot in recent decades. Nevertheless, in consideration of the high NH4+-N content and poor light penetrability exhibited by the original liquid digestate, uneconomical pretreatment on liquid digestate including centrifugation and dilution are indispensable before microalgae cells inoculation. Herein, aiming at eliminating the energy-intensive and freshwater-consuming pretreatment on liquid digestate and enhancing microalgae growth, the dialysis bag which permits nutrients transferring across its wall surface whereas retains almost all matters characterized by impeding light transmission within the raw liquid digestate was integrated into a column photobioreactor (DB-PBR). Consequently, light availability of microalgae cells in DB-PBR was elevated remarkably and thus contributed to a 357.58% improvement on microalgae biomass concentration in DB-PBR than the conventional PBR under 80 μmol m-2 s-1. Likewise, superior nutrients removal efficiencies from liquid digestate were obtained in DB-PBR (NH4+-N: 74.84%, TP: 63.75%) over the conventional PBR (NH4+-N: 30.27%, TP: 16.86%). Furthermore, higher microalgae biomass concentration (1.87 g L-1) and nutrients removal efficiencies (NH4+-N: 95.12%, TP: 76.87%) were achieved in the DB-PBR by increasing the light intensity to 140 μmol m-2 s-1. More importantly, the DB-PBR may provide a simple and greener solution to purify other kinds of wastewater.
Collapse
Affiliation(s)
- Han Shao
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yahui Sun
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China; School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China; Hebei Provincial Lab of Water Environmental Sciences, Hebei Provincial Academy of Ecological and Environmental Sciences, Shijiazhuang, 050037, China.
| | - Xiaoxiang Jiang
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Jun Hu
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Chenglong Guo
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Chenjia Lu
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Feihong Guo
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yunjun Wang
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Chuanchao Dai
- School of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
13
|
El-Naggar NEA, Hamouda RA, Abou-El-Souod GW. Statistical optimization for simultaneous removal of methyl red and production of fatty acid methyl esters using fresh alga Scenedesmus obliquus. Sci Rep 2022; 12:7156. [PMID: 35504903 PMCID: PMC9065141 DOI: 10.1038/s41598-022-11069-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/08/2022] [Indexed: 11/08/2022] Open
Abstract
Microalgae are a diverse group of microorganisms, the majority of which are photosynthetic in nature. Microalgae have different applications, the most important of which is the biological treatment of wastewater. Microalgae grow in various types of wastewater, such as wastewater polluted by Azo dyes, due to microalgae using wastewater as a culture medium, which contains many nutrients like nitrogen, phosphate, and carbon sources. Microalgae grow in various types of wastewater, such as wastewater polluted by Azo dyes, due to microalgae using wastewater as a culture medium, which contains many nutrients like nitrogen, phosphate, and carbon sources. So, microalgae are used for bioremediation of wastewater due to the efficiency of growing in wastewater and for the high production of lipids followed by trans-esterification to biodiesel. Face-centered central composite design (FCCCD) was used to determine the factors that have the most significant impact on the simultaneous decolorization of methyl red and lipid production by the fresh green alga Scenedesmus obliquus. The predicted results indicated that the alga decolorized 70.15% methyl red and produced 20.91% lipids by using 1 g/L nitrogen, an incubation time of 10 days, a pH of 8, and the concentration of methyl red is 17.65 mg/L. The dry biomasses of S. obliquus were also examined by SEM and FTIR before and after treatment with methyl red. SEM and FTIR showed that the properties of dry S. obliquus were altered after the biosorption of methyl red. According to GC-MS analysis of hexane extracts of S. obliquus, the lipid profile differed before and after methyl red decolorization. The results proved that it is possible to use S. obliquus to remove dyes and produce renewable fuels such as biodiesel. The novelty of this study is that this is the first time in which the effect of nitrogen concentrations in the medium used for algal growth on the removal of dye has been studied.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, 21934, Alexandria, Egypt.
| | - Ragaa A Hamouda
- Department of Biology, College of Sciences and Arts Khulis, University of Jeddah, Jeddah, Saudi Arabia
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City, Egypt
| | - Ghada W Abou-El-Souod
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shibīn al-Kawm, Menoufia, Egypt
| |
Collapse
|
14
|
Liu T, Chen Z, Xiao Y, Yuan M, Zhou C, Liu G, Fang J, Yang B. Biochemical and Morphological Changes Triggered by Nitrogen Stress in the Oleaginous Microalga Chlorella vulgaris. Microorganisms 2022; 10:microorganisms10030566. [PMID: 35336142 PMCID: PMC8949318 DOI: 10.3390/microorganisms10030566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Oleaginous microalgae have been considered promising sources of biodiesel due to their high lipid content. Nitrogen limitation/starvation is one of the most prominent strategies to induce lipid accumulation in microalgae. Nonetheless, despite numerous studies, the mechanism underlying this approach is not well understood. The aim of this study was to investigate the effect of nitrogen limitation and starvation on biochemical and morphological changes in the microalga Chlorella vulgaris FACHB-1068, thereby obtaining the optimal nitrogen stress strategy for maximizing the lipid productivity of microalgal biomass. The results showed that nitrogen limitation (nitrate concentration < 21.66 mg/L) and starvation enhanced the lipid content but generally decreased the biomass productivity, pigment concentration, and protein content in algal cells. Comparatively, 3-day nitrogen starvation was found to be a more suitable strategy to produce lipid-rich biomass. It resulted in an increased biomass production and satisfactory lipid content of 266 mg/L and 31.33%, respectively. Besides, nitrogen starvation caused significant changes in cell morphology, with an increase in numbers and total size of lipid droplets and starch granules. Under nitrogen starvation, saturated fatty acids (C-16:0, C-20:0, and C-18:0) accounted for the majority of the total fatty acids (~80%), making C. vulgaris FACHB-1068 a potential feedstock for biodiesel production. Our work may contribute to a better understanding of the biochemical and morphological changes in microalgae under nitrogen stress. Besides, our work may provide valuable information on increasing the lipid productivity of oleaginous microalgae by regulating nitrogen supply.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Yang
- Correspondence: (J.F.); (B.Y.)
| |
Collapse
|