1
|
Fang S, Fan L, Niu Y, Jiao G, Jia H, Wang F, Yang H, Kang Y. SERS imaging investigation of the removal efficiency of pesticide on vegetable leaves by using different surfactants. Food Chem 2024; 445:138722. [PMID: 38387315 DOI: 10.1016/j.foodchem.2024.138722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Pesticide residues on vegetables could be removed by commercial detergents to guarantee food safety, but the removal efficiencies of different formulations of detergents need to be further investigated. In this work, surface enhanced Raman scattering (SERS) imaging method due to its good space resolution as well as high sensitivity is used to track the thiram residue, and evaluate the pesticide removing efficiencies by mixtures of several surfactants at different ratios. Sodium linear alkylbenzene sulphonate-alkyl glycoside (LAS-APG) with the ratio at 5:5 and the concentration at 0.2 % show the best removing effect. In addition, HPLC method is employed to validate the results of SERS imaging. Furthermore, LAS-APG mixture could be efficiently washed out from the leaves through simple household cleaning, meaning no secondary contamination. It is perspective that SERS imaging is an effective technique to explore the effect of fruit and vegetable detergents in removing pesticide residues.
Collapse
Affiliation(s)
- Sugui Fang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Li Fan
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China
| | - Yulian Niu
- Shanghai Jahwa United Co., Ltd., Shanghai 200082, China
| | - Guoshuai Jiao
- Shanghai Jahwa United Co., Ltd., Shanghai 200082, China
| | - Haidong Jia
- Shanghai Jahwa United Co., Ltd., Shanghai 200082, China
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.
| | - Yan Kang
- Shanghai Jahwa United Co., Ltd., Shanghai 200082, China.
| |
Collapse
|
2
|
Oikonomidou O, Kostoglou M, Karapantsios T. Structure Identification of Adsorbed Anionic-Nonionic Binary Surfactant Layers Based on Interfacial Shear Rheology Studies and Surface Tension Isotherms. Molecules 2023; 28:molecules28052276. [PMID: 36903522 PMCID: PMC10005108 DOI: 10.3390/molecules28052276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Mixtures of anionic sodium oleate (NaOl) and nonionic ethoxylated or alkoxylated surfactants improve the selective separation of magnesite particles from mineral ores during the process of flotation. Apart from triggering the hydrophobicity of magnesite particles, these surfactant molecules adsorb to the air-liquid interface of flotation bubbles, changing the interfacial properties and thus affecting the flotation efficiency. The structure of adsorbed surfactants layers at the air-liquid interface depends on the adsorption kinetics of each surfactant and the reformation of intermolecular forces upon mixing. Up to now, researchers use surface tension measurements to understand the nature of intermolecular interactions in such binary surfactant mixtures. Aiming to adapt better to the dynamic character of flotation, the present work explores the interfacial rheology of NaOl mixtures with different nonionic surfactants to study the interfacial arrangement and viscoelastic properties of adsorbed surfactants under the application of shear forces. Interfacial shear viscosity results reveal the tendency on nonionic molecules to displace NaOl molecules from the interface. The critical nonionic surfactant concentration needed to complete NaOl displacement at the interface depends on the length of its hydrophilic part and on the geometry of its hydrophobic chain. The above indications are supported by surface tension isotherms.
Collapse
|
3
|
Sanabria JC, Romero CM. Influence of tetraalkylammonium salts on the adsorption kinetics of bovine serum albumin in aqueous solutions at the air-liquid interface. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Xiang M, Lu Z, You Z, Wang X, Huang M, Xu W, Li H. Interaction quantitative modeling of mixed surfactants for synergistic solubilization by resonance light scattering. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11874-11882. [PMID: 34558047 DOI: 10.1007/s11356-021-16391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
In situ flushing through surfactant-enhanced aquifer remediation (SEAR) technology has long been recognized as a promising technique for NAPL removal from contaminated aquifers. However, there have been few studies on the choice of surfactants. In this work, the interaction quantitative model between resonance light scattering intensity and the concentration of binary surfactant mixtures NP-10+SDBS and NP-10+CTAB was established, and the mechanism of binary surfactant interaction was explored through the model by the resonance light scattering method. The relationship between the model constants and NAPL solubilization was also investigated to better address the application of surfactants in practical NAPL-contaminated site remediation. The critical micelle concentrations (CMCs) of nonylphenol ethoxylate (NP-10), dodecyl benzene sulfonate (SDBS), hexadecyl trimethyl ammonium bromide (CTAB), and the binary surfactant mixtures were measured by resonance light scattering (RLS), which were consistent with those obtained from surface tension measurements. In all cases, the RLS signals exhibited similar variations with surfactant concentration. A quantitative calculation model based on the RLS measurement data was established, and the binding constants KNP-10+SDBS and KNP-10+CTAB were calculated to be 0.66 and 1.51 L·mmol-1, respectively, according to the equilibrium equations. The results showed that the binding constants have a significant positive correlation with NAPL solubilization.
Collapse
Affiliation(s)
- Minghui Xiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Zhen Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Ziyin You
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xuechen Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Maofang Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Weixiong Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
5
|
Pawliszak P, Ulaganathan V, Bradshaw-Hajek BH, Miller R, Beattie DA, Krasowska M. Can small air bubbles probe very low frother concentration faster? SOFT MATTER 2021; 17:9916-9925. [PMID: 34672316 DOI: 10.1039/d1sm01318a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The existing literature on the rise velocities of air bubbles in aqueous surfactant solutions adsorbing at the water-air interface focuses mainly on large bubbles (D > 1.2 mm). In addition, due to the way the bubbles in rising bubble experiments are formed, their size is dependent on interfacial tension (the lower the interfacial tension the smaller the bubble). In this paper, smaller air bubbles (D < 505 ± 3 μm) are used to investigate the effect of the bubble size on the detection of two flotation frothers of different adsorption kinetics via bubble rise velocity measurements. We use an alternative method for bubble generation, allowing us to compare the rise velocity of bubbles of the same size in solutions of frothers of varying bulk concentration. The approach taken (ensuring consistent bubble size) ascertains that the buoyancy force component is kept constant when comparing the different solutions. As a consequence, any variations in the bubble rise velocity can be related to changes in the hydrodynamic drag force acting on a rising bubble. The interfacial behavior of frothers, i.e. the adsorption kinetics, interfacial activity and the maximum amount of molecules adsorbed at the interface, are determined from interfacial tension measurements and adsorption isotherms. The differences in the degree of tangential immobilisation caused by two different frothers are discussed in the context of differences in the structure of the dynamic adsorption layer, which is formed during the bubble rise.
Collapse
Affiliation(s)
- Piotr Pawliszak
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Vamseekrishna Ulaganathan
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | | | - Reinhard Miller
- Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - David A Beattie
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Australia
- ARC Training Centre for Integrated Operations for Complex Resources, Australia
| | - Marta Krasowska
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.
- ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, Australia
- ARC Training Centre for Integrated Operations for Complex Resources, Australia
| |
Collapse
|
6
|
Synthesis of Gemini Cationic Surfactant for proficient extraction of uranium (VI) from sulfuric acid solution. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Hohenschutz M, Grillo I, Dewhurst C, Schmid P, Girard L, Jonchère A, Diat O, Bauduin P. Superchaotropic nano-ions as foam stabilizers. J Colloid Interface Sci 2021; 603:141-147. [PMID: 34186391 DOI: 10.1016/j.jcis.2021.06.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022]
Abstract
HYPOTHESIS Weakly hydrated nanometric ions, called superchaotropes, were recently shown to adsorb strongly to non-ionic surfaces affecting drastically the surface's physical-chemical properties due to a charging effect. Superchaotropic ions could serve as stabilizing agents for non-ionic colloidal systems, such as non-ionic surfactant foams. EXPERIMENTS We study foams of the non-ionic surfactant BrijO10 (C18:1E10) without and in presence of the superchaotropic Keggin-ion SiW12O404- (SiW). The foams are investigated under free drainage conditions by image analysis and conductimetry to reveal the effect of SiW on the foam stability, liquid drainage, and bubble size. Additionally, small angle neutron scattering on the same foams, but in a dry quasi-stationary state, provides insight into effects of SiW on the foam films. FINDINGS SiW strongly stabilizes non-ionic surfactant foams at millimolar concentrations by inducing electrostatic repulsions between foam film interfaces resulting in thicker and monodisperse foam films. A similar effect is observed with the ionic surfactant sodium dodecylsulfate (SDS) but to a lesser extent and with a different mechanism. At the foam films' interface, SiW adsorbs to the polar non-ionic surfactant heads driven by the superchaotropic effect whereas DS- anchors between non-ionic surfactant alkyl chains by the hydrophobic effect. The potential of superchaotropic ions as foam stabilizers is herein demonstrated.
Collapse
Affiliation(s)
- Max Hohenschutz
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France
| | - Isabelle Grillo
- Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Charles Dewhurst
- Institut Laue-Langevin (ILL), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Philipp Schmid
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France
| | - Luc Girard
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France
| | - Alban Jonchère
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France
| | - Olivier Diat
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France
| | - Pierre Bauduin
- Institut de Chimie Séparative de Marcoule, ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Marcoule, France.
| |
Collapse
|
8
|
Wiertel-Pochopien A, Batys P, Zawala J, Kowalczuk PB. Synergistic Effect of Binary Surfactant Mixtures in Two-Phase and Three-Phase Systems. J Phys Chem B 2021; 125:3855-3866. [PMID: 33848150 PMCID: PMC8154601 DOI: 10.1021/acs.jpcb.1c00664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Cationic alkyltrimethylammonium
bromides (CnTAB, with n = 8, 12, 16, 18) and their
mixtures with n-octanol as a nonionic surfactant
were chosen as a model system to study the synergistic effect on foamability
(two-phase system) and floatability (three-phase system) of quartz
in the presence of binary mixtures of ionic/nonionic surfactants.
The foam height of one-component solutions and binary mixtures and
floatability of quartz particles were characterized as a function
of the surfactant concentration and the number of carbons (n) in the alkyl chain of CnTAB.
The experimental results of foamability and floatability measurements
in one-component and mixed solutions revealed the synergistic effect,
causing a significant enhancement in the foam height and recovery
of quartz. In the presence of n-octanol, the height
of foam increased remarkably for all CnTAB solutions studied, and this effect, whose magnitude depended
on the CnTAB hydrophobic tail length,
could not be justified by a simple increase in total surfactant concentration.
A similar picture was obtained in the case of flotation response.
The mechanism of synergistic effect observed in mixed CnTAB/n-octanol solutions was proposed.
The discussion was supported by molecular dynamics simulations, and
the probable mechanism responsible for synergism was discussed. In
addition, an analysis allowing accurate determination of the concentration
regimes, where the synergistic effect can be expected, was given.
It was shown that for the two-phase system, the n-octanol molecule preadsorption at the liquid/gas interface causes
an increase in CnTAB adsorption coverage
over the level expected from its equilibrium value in the one-component
solution. In the case of the three-phase system, the synergistic effect
was related to the ionic surfactants serving as an anchor layer for n-octanol, which, in water/n-octanol solution
(one-component system), do not adsorb on the surface of quartz.
Collapse
Affiliation(s)
- Agata Wiertel-Pochopien
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Jan Zawala
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Przemyslaw B Kowalczuk
- Department of Geoscience and Petroleum, Norwegian University of Science and Technology, S. P. Andersens veg 15a, 7031 Trondheim, Norway.,Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|