1
|
Direct Dry Carbonation of Mining and Industrial Wastes in a Fluidized Bed for Offsetting Carbon Emissions. Processes (Basel) 2022. [DOI: 10.3390/pr10030582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The direct dry mineral carbonation of selected mining and industrial wastes, using carbon dioxide derived from combustion flue gas, was evaluated. Specifically, coal fly ash from two Australian brown coal-fired power plants, red mud from the refinement of bauxite into alumina, and diamond tailings were considered, due to their relevant residual alkali content. These materials were tested in a laboratory-scale fluidized bed reactor at different temperatures (300–450 °C), in a reactive environment that simulated the typical CO2 concentration in a combustion flue gas. The experimental results showed a low, but still appreciable, CO2 capture capacity for three of the tested materials, which appears to be more favorable in the lower temperature range and with relatively fast kinetics, indicating the practical relevance of the process. One of the fly ashes exhibited a different behavior; starting at 350 °C, the sorbent began to release CO2, rather than absorb it. This suggested that the sorbent was already extensively carbonated by weathering before the tests. This study provides some evidence for the possible viability of recycling mining waste and for the circular economy in offsetting carbon emissions in the mining industry.
Collapse
|
2
|
Fantucci H, Aguirre M, Santos RM. Wet Air Oxidation Route for the Synthesis of Organomineral Fertilizers from Synergistic Wastes (Pomace and Kimberlite). Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hugo Fantucci
- School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Maria Aguirre
- School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Rafael M. Santos
- School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
3
|
Waste to Catalyst: Synthesis of Catalysts from Sewage Sludge of the Mining, Steel, and Petroleum Industries. SUSTAINABILITY 2020. [DOI: 10.3390/su12239849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The generation of sewage sludge presents a problem for several manufacturing companies as it results from industrial processes or effluent treatment systems. The treatment of this type of waste requires high economic investment, for this reason, it is necessary to find alternatives to recover the valuable materials of the sludges. In this study, metal catalysts were synthesized using waste sludge from the steel, mining, and hydrocarbon industries. The waste sludge was subjected to thermal treatments for the removal of organic content and the reduction of metals with hydrogen current to activate their catalytic properties. The sludge and synthesized catalysts were analyzed to determine their physical, chemical, thermoenergetic, and catalytic properties. Catalytic activity was evaluated using CO chemisorption and by thermal–catalytic decomposition of crude oil. The best conditions for synthesizing the catalysts were a calcination temperature between 300 and 500 °C and a reduction temperature between 300 and 900 °C. The catalysts presented a specific surface between 2.33 and 16.78 m2/g. The catalytic material had a heat capacity between 0.7 and 1.2 kJ/kg∙K. The synthesized materials presented catalytic activity comparable to that of commercial catalysts. With this recovery technique, the industrial waste can be valorized, obtaining catalyst derived from the sludges and promoting the circular economy of manufacturing companies.
Collapse
|