1
|
Wu J, Feng J, Yang B, Martin R, Song S, Quintana M, Jia F, Tian X. The anisotropic adsorption of potassium cetyl phosphate on molybdenite surface and its implication for improving the flotation of molybdenite fines. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
2
|
Substituent Effects in Kaolinite Flotation Using Dodecylamine: Experiment and DFT Study. Processes (Basel) 2023. [DOI: 10.3390/pr11030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
The molecular structure of cationic surfactants is closely related to their flotation performance. In this paper, three cationic surfactants with different head group structures were selected as collectors of kaolinite, and the substituent effects were studied by the DFT method. The DFT calculation results showed that increasing the number of substituents in the dodecylamine head group can significantly increase its surface and head group charge. Dodecylamine has the lowest LUMO orbital energy, so dodecylamine has the strongest electron attraction ability and the strongest interaction with kaolinite. Electron density differential showed that there was an area of electron aggregation between the collector and the surface of the kaolinite. The interaction energy of DDA on kaolinite surfaces was greater than that of the other two collectors, indicating that the adsorption of DDA on the surface of kaolinite was more stable. Flotation results showed that higher a kaolinite yield was obtained in the presence of dodecyl dihydroxyethyl methyl ammonium chloride. The calculated results of the solvent-accessible surfaces, the head group charge, and the number of bonds between the collector and the kaolinite show good consistency with the actual flotation results of the three collectors, which can be used as a screening index for kaolinite flotation collectors.
Collapse
|
3
|
Effects of Water-to-Cement Ratios on the Properties of Magnesium Potassium Phosphate Cement Prepared with Lithium-Extracted Magnesium Residue. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Salt lake magnesium phosphate cement (SLMKPC) was prepared by mixing potassium dihydrogen phosphate (KH2PO4) with lithium-extracted magnesium residue (MR). The hydration-hardening process and the variation in the phase composition and microstructure of hydration products with the change of the water-cement-ratio (W/C) were studied by measuring the setting time, hydration exothermic temperature, and compressive strength of the hardened slurry. It was found that W/C ratios had significant effects on the setting time, hydration exothermal temperature curve, and compressive strength of SLMKPC. With the increase of W/C, the setting time was prolonged significantly. The exothermic hydration peak temperature first increased and then decreased, and the number of exothermic peaks gradually changed from one to two. The optimal compressive strength was obtained when W/C = 0.2–0.3. Hydration products changed significantly with the increase of W/C, the MgKPO4·6H2O (MKP) in the matrix was more stable when W/C = 0.2 and 0.3 than when W/C = 0.25, 0.35, and 0.4. When W/C = 0.3, SLMKPC had a compact structure with a certain operating space and better mechanical properties.
Collapse
|
4
|
Molecular dynamics simulation of magnesite and dolomite in relation to flotation with cetyl phosphate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125928] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|