1
|
Jinger D, Kaushal R, Kumar R, Paramesh V, Verma A, Shukla M, Chavan SB, Kakade V, Dobhal S, Uthappa AR, Roy T, Singhal V, Madegowda M, Kumar D, Khatri P, Dinesh D, Singh G, Singh AK, Nath AJ, Joshi N, Joshi E, Kumawat S. Degraded land rehabilitation through agroforestry in India: Achievements, current understanding, and future prospectives. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1088796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Land degradation is one of the most important factors responsible for the alarming situation of food security, human health, and socioeconomic development in the country. Currently, 120.7 M ha of land in the country is affected by land degradation, out of which 85.7 M ha of land is affected by soil erosion caused by water and wind. Moreover, physical, chemical, and biological degradation are the major forms of land degradation in the country. Deforestation or tree cover loss (2.07 M ha) from 2001 to 2021, intensive rainfall (>7.5 mm ha−1), uncontrolled grazing (5.65 M ha), indiscriminate use of fertilizers (32 MT year−1), and shifting cultivation (7.6 M ha) are other major factors that further aggravate the process of land degradation. In order to alleviate the problem of land degradation, numerous agroforestry technologies have been developed after years of research in different agroclimatic zones of the country. The major agroforestry systems observed in the country are agri-horticulture, silvipasture, and agri-silviculture. This review indicates the potential of agroforestry in enhancing carbon sequestration (1.80 Mg C ha−1 year−1 in the Western Himalayan region to 3.50 Mg C ha−1 year−1 in the island regions) and reduced soil loss and runoff by 94% and 78%, respectively, in Northeast India. This can be concluded that the adoption of the agroforestry system is imperative for the rehabilitation of degraded lands and also found to have enough potential to address the issues of food, environmental, and livelihood security. This review’s findings will benefit researchers, land managers, and decision-makers in understanding the role of agroforestry in combating land degradation to enhance ecosystem service in India and planning suitable policies for eradicating the problem effectively.
Collapse
|
2
|
Soil Carbon Sequestration in Novel Ecosystems at Post-Mine Sites—A New Insight into the Determination of Key Factors in the Restoration of Terrestrial Ecosystems. FORESTS 2022. [DOI: 10.3390/f13010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Mining activities are one of the main causes of land degradation around the world and reduce the quality of the surrounding ecosystems. Restoration approaches using different vegetations and reclamation methods have been implemented to address this issue. In this review, paper, different studies focusing on the effect of the restoration of mining sites on the accumulation of soil organic carbon (SOC) were analyzed. SOC in reclaimed mining soil (RMS) increased considerably after various restoration efforts were implemented. The amount of SOC accumulated in RMS was mostly influenced by the restoration age, vegetation type, and substrate or type of reclamation used. From the scientific papers analyzed, we found that SOC accumulation increases with restoration age; however, vegetation type and reclamation have varied effects. According to the review, the restoration of mine sites with vegetation resulted in a rate of SOC accumulation ranging from 0.37 to 5.68 Mg SOC ha−1 year−1. Climate conditions influenced the type of vegetation used for restoration. Regrading, liming, NPK fertilization, and seeding a mix of legumes and grasses were the most efficient reclamation techniques. Additionally, the use of grass and legume better facilitates the early accumulation of SOC compared with afforestation. Thus, the selection of appropriate tree species composition, reclamation treatments, and restoration age are the key factors for a high SOC accumulation rate.
Collapse
|
3
|
Ahirwal J, Maiti SK. Restoring coal mine degraded lands in India for achieving the United Nations‐Sustainable Development Goals. Restor Ecol 2021. [DOI: 10.1111/rec.13606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jitendra Ahirwal
- Department of Forestry, School of Earth Sciences and Natural Resource Management Mizoram University Aizawl 796004 India
| | - Subodh Kumar Maiti
- Department of Environmental Science and Engineering Indian Institute of Technology (Indian School of Mines) Dhanbad 826004 India
| |
Collapse
|
4
|
Eco-Restoration of Coal Mine Spoil: Biochar Application and Carbon Sequestration for Achieving UN Sustainable Development Goals 13 and 15. LAND 2021. [DOI: 10.3390/land10111112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Open cast coal mining causes complete loss of carbon sink due to the destruction of vegetation and soil structure. In order to offset the destruction and to increase sequestration of carbon, afforestation is widely used to restore these mine spoils. The current field study was conducted to assess the ecosystem status, soil quality and C pool in an 8 years old reclaimed mine spoil (RMS), compared to a reference forest (RF) site and unamended mine spoil (UMS). Biochar (BC) prepared from invasive weed Calotropis procera was applied in this 8 year RMS at 30 t ha−1 (BC30) and 60 t ha−1 (BC60) to study its impact on RMS properties and C pool. Carbon fractionation was also conducted to estimate inorganic, coal and biogenic carbon pools. The C stock of 8 year old RMS was 30.98 Mg C ha−1 and sequestered 113.69 Mg C ha−1 CO2. BC30 and BC60 improved the C-stock of RMS by 31% and 45%, respectively, and increased the recalcitrant carbon by 65% (BC30) and 67% (BC60). Spoil physio-chemical properties such as pH, cation exchange capacity, moisture content and bulk density were improved by biochar application. The total soil carbon at BC30 (36.3 g C kg−1) and BC60 (40 g C kg−1) was found to be significantly high compared to RMS (21 g C kg−1) and comparable to RF (33 g C kg−1). Thus, eco-restoration of coal mine spoil and biochar application can be effective tools for coal mine reclamation and can help in achieving the UN sustainable development goal 13 (climate action) by increasing carbon sequestration and 15 (biodiversity protection) by promoting ecosystem development.
Collapse
|
5
|
Assessment of Forest Ecosystem Development in Coal Mine Degraded Land by Using Integrated Mine Soil Quality Index (IMSQI): The Evidence from India. FORESTS 2020. [DOI: 10.3390/f11121310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research highlights: (1) Ecosystem development assessed in an afforested post-mining site. (2) Soil organic carbon (SOC) and total nitrogen (TN) stock reached close to the reference forest site after 25 years of afforestation. (3) Integrated mine soil quality index is developed to assess the reclamation success. Background and Objectives: Estimation of the mine soil quality is one of the most important criterions for evaluating the reclamation success and restoration of novel ecosystems of the post-industrial degraded lands. The aim of this long-term experiment was to investigate the influence of revegetation on Technosol (defined as anthropogenic soil resulted from reclamation of mine spoil materials) as the basic ecosystem development. Materials and Methods: A field study was carried out in the chronosequence afforested post-mining sites (5, 10, 25 years) and compared with natural forest site. We assessed the physicochemical properties and nutrient stock of mine soil and estimated general mine soil quality by using an integrated mine soil quality index (IMSQI). The studies were fully randomized in the chronosequence of afforested post-mining sites. Results: Nutrient dynamics and soil properties (physicochemical and biological) were recovered with the increase age of reclamation. Soil organic carbon (SOC) stock significantly increased from 9.11 Mg C ha−1 in 5 years to 41.37 Mg C ha−1 after 25 years of afforestation. Likewise, total nitrogen (TN) stock significantly increased from 1.06 Mg N ha−1 in 5 years to 4.45 Mg N ha−1 after 25 years of revegetation. Ecosystem carbon pool enhanced at a rate of 6.2 Mg C ha−1 year−1. A Principal Component Analysis (PCA)-based IMSQ index was employed to assess the reclamation success. The most influential properties controlling the health of reclaimed coal mine soil are fine earth fraction, moisture content, SOC and dehydrogenase activity. IMSQ index values are validated with vegetation characteristics. The estimated IMSQI ranged from 0.455 in 5-year-old (RMS5) to 0.746 in 25-year-old reclaimed dump (RMS25). Conclusions: A 25-year-old reclaimed dump having greater IMSQI (0.746) than reference forest soils (0.695) suggested the aptness of revegetation to retrieve soil quality and function in derelict mine land.
Collapse
|