1
|
Chkirida S, El Mernissi N, Zari N, Qaiss AEK, Bouhfid R. In-situ magnetic alginate coated chitosan core@shell beads with excellent performance in simulated and real wastewater treatment: Behavior, mechanisms, and new perspectives. Int J Biol Macromol 2024; 260:129389. [PMID: 38232882 DOI: 10.1016/j.ijbiomac.2024.129389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Herein, a new hybrid magnetic core@shell biocomposite was prepared based on an alginate-bentonite core and a chitosan shell layer (mAB@Cs) where magnetic Fe3O4 NPs (50.7 nm) were in-situ generated on the surface via a simple non-thermal co-precipitation approach. The biocomposite has a high ability to magnetically separate and remove organic (ciprofloxacin (CPX)) and seven toxic inorganic (Cu2+, Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Hg2+) contaminants from simulated wastewater. Experimental results showed a CPX monolayer chemisorption with a Langmuir maximum adsorption capacity of 264.7 mg/g, maintained effectiveness up to the fifth cycle, and high removal rates of heavy metals ranging from 74.89 % to 99.86 % corresponding to adsorption capacities ranging from 12 to 20 mg/g. For a more accurate evaluation, the biocomposite was tested on a real urban wastewater sample (RWW) and it has manifested a noteworthy efficiency in removing a mixture of inorganic pollutants in terms of potassium K+ and orthophosphate phosphorous P-PO43-, and organic matter in terms of biological oxygen demand (BOD) and chemical oxygen demand (COD) with 46 %, 90 %, 84 %, and 64 % removal efficiencies, respectively. On top of this, a high inactivation rate of E. coli of the order of 96 % was recorded, making the prepared magnetic biocomposite adept for the simultaneous removal of emergent wastewater pollutants, from organic, inorganic, to pathogen microorganisms.
Collapse
Affiliation(s)
- Soulaima Chkirida
- Composites and Nanocomposites Center, Foundation of Advanced Science Innovation and Research MAScIR, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Laboratory of Organic and heterocyclic chemistry, Mohammed V University of Rabat, Faculty of Sciences, Rabat, Morocco
| | - Najib El Mernissi
- Biotechnologie Verte, Foundation Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Rue Mohamed Jazzouli, Madinat El Irfane 10100, Rabat, Morocco
| | - Nadia Zari
- Composites and Nanocomposites Center, Foundation of Advanced Science Innovation and Research MAScIR, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abou El Kacem Qaiss
- Composites and Nanocomposites Center, Foundation of Advanced Science Innovation and Research MAScIR, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Rachid Bouhfid
- Composites and Nanocomposites Center, Foundation of Advanced Science Innovation and Research MAScIR, Rabat Design Center, Madinat Al Irfane, Rabat, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco.
| |
Collapse
|
2
|
Kalebić B, Bafti A, Cajner H, Marciuš M, Matijašić G, Ćurković L. Optimization of Ciprofloxacin Adsorption on Clinoptilolite-Based Adsorbents Using Response Surface Methodology. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:740. [PMID: 36839107 PMCID: PMC9966051 DOI: 10.3390/nano13040740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The adsorption of the antibiotic ciprofloxacin (CIP) from water solution by natural zeolite-clinoptilolite (CLI), magnetic clinoptilolite (MAG-CLI), and graphene oxide coated magnetic clinoptilolite (GO-MAG-CLI) was investigated. The novel approach of an environmentally friendly and cost-effective microwave-assisted method was applied for the magnetic composite synthesis. Detailed characterization of the prepared composites was achieved. In order to investigate the effect of the initial CIP concentration, pH, temperature, contact time, and type of adsorbent on the adsorption efficiency of CIP, and to obtain the optimal conditions for CIP removal, the response surface methodology central composite factorial design (RSM-CCF) was applied. The results obtained by the RSM-CCF showed that among the studied adsorbents, GO-MAG-CLI had the highest adsorption capacity for CIP, achieved for the initial concentration of 48.47 mg dm-3 at a pH of 5 and 24.78 °C after 19.20 min of contact time. The adsorption kinetics studied for the initial CIP concentration range of 15-50 mg dm-3 followed Lagergren's pseudo-second-order model, and the Langmuir isotherm was the most suitable one to describe the CIP adsorption onto GO-MAG-CLI.
Collapse
Affiliation(s)
- Barbara Kalebić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
| | - Arijeta Bafti
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, 10000 Zagreb, Croatia
| | - Hrvoje Cajner
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
| | - Marijan Marciuš
- Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| | - Gordana Matijašić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, 10000 Zagreb, Croatia
| | - Lidija Ćurković
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Adsorption of Methylene Blue and Tetracycline by Zeolites Immobilized on a PBAT Electrospun Membrane. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010081. [PMID: 36615274 PMCID: PMC9822180 DOI: 10.3390/molecules28010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The detection of emerging contaminants in bodies of water has steadily increased in recent years, becoming a severe problem threatening human and ecosystem health. Developing new materials with adsorption properties to remove these pollutants represents an important step toward a potential solution. In this paper, a polybutylene adipate terephthalate (PBAT) nanofibrous membrane incorporating clinoptilolite zeolite was developed and its excellent performance in removing tetracycline (TC) and methylene blue (MB) from water was demonstrated. The composite membrane was prepared in two steps: firstly, a homogeneous dispersion of clinoptilolite (1 wt% respect to polymer) in a PBAT solution (12.6 wt%) was electrospun; secondly, the electrospun membrane was subjected to an acid treatment that improved its wettability through the protonation of the surface silanol groups of clinoptilolite. The resulting membrane was hydrophilic and showed higher adsorption for TC (800 mg/g) and MB (100 mg/g), using a low dose (90 mg/L) powdered zeolite. The maximum removal capacity was obtained at neutral pH, being the cation exchange reaction the main adsorption mechanism. Pseudo-second-order kinetics and Henry's law agree well with the proposed chemisorption and the high affinity of TC and MB for the adsorbent. The material can be reused after the removal process without generating additional contamination, although losing some effectivity.
Collapse
|
4
|
Chi X, Zeng L, Du Y, Huang J, Kang Y, Luo J, Zhang Q. Adsorption of levofloxacin on natural zeolite: effects of ammonia nitrogen and humic acid. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2928-2944. [PMID: 35638797 DOI: 10.2166/wst.2022.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The persistence of antibiotics in sewage treatment plants in recent years has become a serious problem. Meanwhile, humic acid and ammonia nitrogen are widely distributed in natural reservoirs and might influence the sorption, migration and transformation of antibiotics. In this study, natural zeolite (NZ) was evaluated as an adsorbent for the removal of levofloxacin (LEV). The physical and chemical properties of NZ before and after adsorption were characterized by various analytical techniques to develop the mechanism. The effects of ammonia nitrogen and humic acid (HA) on the interfacial behavior of LEV on NZ were explored. Comparative experiments revealed that LEV adsorption on NZ involved electrostatic interactions and ion exchange, and the adsorption processes were well fitted by the Langmuir isotherm model and pseudosecond-order kinetic model. The maximum experimental adsorption capacity of LEV was 22.17 mg·g-1 at pH 6.5. The presence of ammonia nitrogen and HA significantly suppressed the adsorption of LEV due to competitive adsorption, and the adsorption capacity decreased 58 and 46%, respectively. It is obvious that low concentrations of ammonia nitrogen and HA are conducive to improving the treatment effect of sewage. This study demonstrates that NZ is a promising and efficient material for LEV adsorption.
Collapse
Affiliation(s)
- Xiaoying Chi
- School of Environment, South China Normal University, 378 Waihuan West Road, Guangzhou 510006, China E-mail: ; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, Guangzhou, China
| | - Lixuan Zeng
- School of Environment, South China Normal University, 378 Waihuan West Road, Guangzhou 510006, China E-mail: ; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, Guangzhou, China
| | - Yuejin Du
- School of Environment, South China Normal University, 378 Waihuan West Road, Guangzhou 510006, China E-mail: ; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, Guangzhou, China
| | - Jiaquan Huang
- School of Environment, South China Normal University, 378 Waihuan West Road, Guangzhou 510006, China E-mail: ; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, Guangzhou, China
| | - Yuan Kang
- School of Environment, South China Normal University, 378 Waihuan West Road, Guangzhou 510006, China E-mail: ; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, Guangzhou, China
| | - Jiwen Luo
- School of Environment, South China Normal University, 378 Waihuan West Road, Guangzhou 510006, China E-mail: ; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, Guangzhou, China
| | - Qiuyun Zhang
- School of Environment, South China Normal University, 378 Waihuan West Road, Guangzhou 510006, China E-mail: ; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety and MOE Key Laboratory of Environmental Theoretical Chemistry, Guangzhou, China
| |
Collapse
|
5
|
Electrocoagulation vs. Integrate Electrocoagulation-Natural Zeolite for Treatment of Biowaste Compost Leachate—Whether the Optimum Is Truly Optimal. MINERALS 2022. [DOI: 10.3390/min12040442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural zeolites are well-known materials widely applied in the environmental remediation treatment process. However, the integration of various treatment methods is exceedingly investigated for achieving satisfactory effluent quality. In this paper, the integration of electrocoagulation and natural zeolite was evaluated in the treatment of biowaste compost leachate in a single step. The influence of different distances of electrodes (1.5, 3, and 4.5 cm), stirring speed (70, 200, and 400 rpm), the addition of natural zeolite and electrolyte NaCl on the efficiency of treatment of biowaste compost leachate has been carried out. Process efficiency was evaluated by measuring the change of pH value, electrical conductivity, temperature, turbidity, chemical oxygen demand (COD), total Kjeldahl nitrogen (TNK), total solids, and sludge settling test. The Taguchi method was applied to optimize biowaste compost leachate treatment. Experiments are planned according to Taguchi’s L8 (24 41) orthogonal array. The stirring speed, electrode distance, electrolyte and zeolite addition, solution initial pH adjustment were chosen as controllable factors, and their impact on COD, turbidity, TNK, settling rate, and electrode consumption were studied. Results show that optimal conditions depend on the parameter of interest and that optimal values for a particular parameter are not always the optimum if the desired goal is considered.
Collapse
|
6
|
Mineral Composition and Structural Characterization of the Clinoptilolite Powders Obtained from Zeolite-Rich Tuffs. MINERALS 2021. [DOI: 10.3390/min11101030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Clinoptilolite is a precious zeolite mineral that has the most comprehensive physicochemical properties among all the zeolite group minerals. Due to these unique properties, clinoptilolite has a wide range of applications in many different industries. In Poland, the clinoptilolite occurs only as an accompanying mineral in the sedimentary rocks nearby Rzeszów. In Europe, the abundant clinoptilolite-bearing deposits are located in Slovakia and Ukraine, where clinoptilolite mineralization occurs in the volcanic tuffs. Due to clinoptilolite’s rare performance, it is extremely crucial to manage its deposits in a complementary manner. In this paper, the mineralogical and structural characterization of the clinoptilolite powders obtained by mineral processing of the clinoptilolite-rich tuffs from Slovakia and Ukraine deposits were discussed. The scope of research covered determination of the mineral composition of the tuffs, structural analysis of the clinoptilolite crystals, as well as textural and physical properties of the powders obtained by mineral processing of the tuffs. In addition, this paper includes the comparative study of the most significant zeolite deposits in the world and investigated clinoptilolite-rich tuffs. A wide spectrum of methods was used: X-ray powder diffraction (XRD), thermal analysis (DSC, TG), X-ray fluorescence (XRF), optical microscopy, Scanning Electron Microscopy (SEM-EDS), the laser diffraction technique, and low-temperature nitrogen adsorption/desorption. The test results indicated that the major component of the tuffs is clinoptilolite, which crystallized in the form of very fine-crystalline thin plates. The clinoptilolite mineralization in the Ukrainian and Slovakian tuffs exhibited a strong resemblance to the clinoptilolite crystals in Yemeni and Turkish tuffs. With respect to the mineral composition, the investigated tuffs showed excellent conformity with the Miocene white tuffs from Romania. The Ukrainian and Slovakian tuffs do not reveal the presence of the clay minerals, which is quite common for naturally occurring zeolite-rich rocks in various deposits in the world. The textural features together with mineral composition of the investigated samples incline that they are potentially suitable raw materials for the sorbent of petroleum compounds. Moreover, the obtained results can be useful indicators with respect to the crushing and compaction susceptibility of the Ukrainian and Slovakian clinoptilolite-rich tuffs.
Collapse
|