1
|
Yushin N, Jakhu R, Chaligava O, Grozdov D, Zinicovscaia I. Evaluation of the potentially toxic elements and radionuclides in the soil sample of Novaya Zemlya in the Arctic Circle. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124871. [PMID: 39222768 DOI: 10.1016/j.envpol.2024.124871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The study presented here elucidate the concentrations of radionuclides and potentially toxic elements in the soil samples around the Novaya Zemlya in the Russian Arctic zone, determined using HPGe gamma spectrometry, inductively coupled plasma optical emission spectrometry and direct mercury analyzer. The average detected concentrations for 226Ra, 232Th, 40K, 235U and 137Cs were 36.40, 46.06, 768, 2.06 and 4.71 Bq/kg, respectively. At many sampling sites, the concentrations of potentially toxic elements (Zn, Cu, Pb, Cd, Ni, and Cr) were higher than the natural levels. Positive Matrix Factorization analysis revealed the contribution of oil dumps (32%), natural sources (16%), bird colonies (32%) and atmospheric deposition (20%) for elevated elements content. In the case of radionuclides, the natural occurring contamination (38%) was primary source followed by dumped material (32%) and bird colonies (30%). The radiological risk from radionuclides was relatively high, yet still under permissible levels. For potentially toxic elements, Fe was predominant non-carcinogenic pollutant and Ni emerged as major carcinogenic contaminant. Keeping in view the high content of some elements, future studies are required to keep the human and ecological risk low, and to establish scientific grounds for the contribution of settled bird species. The findings of the study advance the present knowledge about the contamination of the study area and lays the path for further effort.
Collapse
Affiliation(s)
- Nikita Yushin
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russia
| | - Rajan Jakhu
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russia.
| | - Omari Chaligava
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russia; Faculty of Informatics and Control Systems, Georgian Technical University, 77 MerabKostava Street, 0171, Tbilisi, Georgia
| | - Dmitrii Grozdov
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russia
| | - Inga Zinicovscaia
- Joint Institute for Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russia; Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str., Magurele, Romania
| |
Collapse
|
2
|
Chaudhary DK, Seo D, Han S, Hong Y. Distribution of mercury in modern bottom sediments of the Beaufort Sea in relation to the processes of early diagenesis: Microbiological aspect. MARINE POLLUTION BULLETIN 2024; 202:116300. [PMID: 38555803 DOI: 10.1016/j.marpolbul.2024.116300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/23/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
This study investigated the contents of total mercury (THg), trace metals, and CH4 and determined the signature microbes involved in various biogeochemical processes in the sediment of the Canadian Beaufort Sea. The THg ranged between 32 and 63 μg/kg and the trace metals such as Fe, Al, Mn, and Zn were significant in distributions. The pH, SO42-, Fe2+, and redox proxy metals were crucial factors in the spatial and vertical heterogeneity of geochemical distributions. CH4 was detected only at the mud volcano site. Microbial analyses identified Clostridium, Desulfosporosinus, Desulfofustis, and Desulftiglans as the predominant Hg methylators and sulfate reducers; Nitrosopumilus and Hyphomicrobium as the major nitrifiers and denitrifiers; Methanosarcina and Methanosaeta as keystone methanogens; and Methyloceanibacter and Methyloprofundus as signature methanotrophs. Altogether, this study expands the current understanding of the microbiological and geochemical features and could be helpful in predicting ecosystem functions in the Canadian Beaufort Sea.
Collapse
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - DongGyun Seo
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea.
| |
Collapse
|
3
|
Kumar Chaudhary D, Bajagain R, Seo D, Hong Y, Han S. Depth-dependent microbial communities potentially mediating mercury methylation and various geochemical processes in anthropogenically affected sediments. ENVIRONMENTAL RESEARCH 2023; 237:116888. [PMID: 37586452 DOI: 10.1016/j.envres.2023.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Metal contamination and other geochemical alterations affect microbial composition and functional activities, disturbing natural biogeochemical cycles. Therefore, it is essential to understand the influences of multi-metal and geochemical interactions on microbial communities. This work investigated the distributions of total mercury (THg), methylmercury (MeHg), and trace metals in the anthropogenically affected sediment. The microbial communities and functional genes profiles were further determined to explore their association with Hg-methylation and geochemical features. The levels of THg and MeHg in sediment cores ranged between 10 and 40 mg/kg and 0.01-0.16 mg/kg, respectively, with an increasing trend toward bottom horizons. The major metals present at all depths were Al, Fe, Mn, and Zn. The enrichment and contamination indices confirmed that the trace metals were highly enriched in the anthropogenically affected sediment. Various functional genes were detected in all strata, indicating the presence of active microbial metabolic processes. The microbial community profiles revealed that the phyla Proteobacteria, Bacteroidetes, Bathyarchaeota, and Euryarchaeota, and the genera Thauera, Woeseia, Methanomethylovorans, and Methanosarcina were the dominant microbes. Correlating major taxa with geochemical variables inferred that sediment geochemistry substantially affects microbial community and biogeochemical cycles. Furthermore, archaeal methanogens and the bacterial phyla Chloroflexi and Firmicutes may play crucial roles in enhancing MeHg levels. Overall, these findings shed new light on the microbial communities potentially involved in Hg-methylation process and other biogeochemical cycles.
Collapse
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea
| | - Rishikesh Bajagain
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea
| | - DongGyun Seo
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea.
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
4
|
Ulyantsev A, Ivannikov S, Bratskaya S, Charkin A. Radioactivity of anthropogenic and natural radionuclides in marine sediments of the Chaun Bay, East Siberian Sea. MARINE POLLUTION BULLETIN 2023; 195:115582. [PMID: 37748418 DOI: 10.1016/j.marpolbul.2023.115582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Natural radioactive isotopes serve as a useful proxy of geological and geochemical processes in marine environment, while radiocesium serves as an indicator of man-made contamination. Monitoring of natural and anthropogenic radioactivity under conditions of the climate changes in the Arctic region is of high importance in investigations of this natural system. For the first time, we report the data on spatial distribution of natural (232Th, 226Ra, 40K) and anthropogenic (137Cs) radionuclide activities in the marine sediments from Chaun Bay (East Siberian Sea). The measured activity concentrations varied in the range 23.7-77.9 (mean 39.2) Bq kg-1 for 232Th, 16.5-39.3 (mean 26.6) Bq kg-1 for 226Ra, 535-991 (mean 726) Bq kg-1 for 40K, and 0.5-4.7 (mean 2.0) Bq kg-1 for 137Cs. The radiocesium level in the sediments showed no local sources of anthropogenic pollution in the Chaun Bay, while the average activity concentration of 40K was 1.8 times higher than worldwide.
Collapse
Affiliation(s)
- Alexander Ulyantsev
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 117997 Moscow, Russia.
| | - Sergei Ivannikov
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Svetlana Bratskaya
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| | - Alexander Charkin
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
5
|
Kohler SG, Kull LM, Heimbürger-Boavida LE, Ricardo de Freitas T, Sanchez N, Ndungu K, Ardelan MV. Distribution pattern of mercury in northern Barents Sea and Eurasian Basin surface sediment. MARINE POLLUTION BULLETIN 2022; 185:114272. [PMID: 36330938 DOI: 10.1016/j.marpolbul.2022.114272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Marine sediment is a significant sink for the global pollutant mercury. In a rapidly changing Arctic region, mercury (Hg) bioaccumulation in the marine ecosystem remains a prominent environmental issue. Here, we report surface sediment (0-2 cm) concentrations of Hg and other toxic elements of interest (Cr, Ni, Zn, Cu, As, Cd, Pb) in the northern Barents Sea and Eurasian Basin. We observed average Hg concentrations of 65 ± 23 ng/g with the highest concentration of 116 ng/g in the Eurasian Basin. Our calculated enrichment factors suggest low anthropogenic enrichment for mercury, chromium, nickel, and copper. Mercury and trace element geographic patterns are best explained by the origin and transportation of fine grain sediment towards the Eurasian Basin, with scavenging by both particulate organic carbon and metal oxides as significant delivery mechanisms.
Collapse
Affiliation(s)
- Stephen G Kohler
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | - Laura M Kull
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | - Lars-Eric Heimbürger-Boavida
- Aix-Marseille Université, CNRS/INSU, University de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Bât. Méditerranée, Campus de Luminy-Océanomed, 13009 Marseille, France.
| | | | - Nicolas Sanchez
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491 Trondheim, Norway.
| | - Kuria Ndungu
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579 Oslo, Norway.
| | - Murat V Ardelan
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491 Trondheim, Norway.
| |
Collapse
|
6
|
Chaudhary DK, Karki HP, Bajagain R, Kim H, Rhee TS, Hong JK, Han S, Choi YG, Hong Y. Mercury and other trace elements distribution and profiling of microbial community in the surface sediments of East Siberian Sea. MARINE POLLUTION BULLETIN 2022; 185:114319. [PMID: 36343547 DOI: 10.1016/j.marpolbul.2022.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
In this study, total mercury (THg), methylmercury (MeHg), various trace elements, and microbial communities were measured in surface sediments of the East Siberian Sea (ESS). The results showed that the average values of THg and MeHg were 58.8 ± 15.21 μg/kg and 0.50 ± 0.22 μg/kg, respectively. The notable levels of trace elements present in both surface sediment and porewater were Al, Fe, and Mn. The enrichment factor and geoaccumulation index analyses found that both natural phenomena and anthropogenic activities contributed to elevated concentrations of metals in the ESS. The redox proxy metals, pH, and SO42- were the major factors influencing the THg and MeHg distributions. Microbial profiles were substantially affected by metals and other abiotic factors. Proteobacteria and Thaumarchaeota were the most abundant phyla. Overall, the findings presented here facilitate the understanding of the current status of metal contamination, its influencing factors, and metal-microbiota-interactions in ESS.
Collapse
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Hem Prakash Karki
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Rishikesh Bajagain
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Hwansuk Kim
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Tae Siek Rhee
- Korea Polar Research Institute, 26 Songdomirae-ro, Incheon 21990, Republic of Korea
| | - Jong Kuk Hong
- Korea Polar Research Institute, 26 Songdomirae-ro, Incheon 21990, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Young-Gyun Choi
- Department of Environmental Engineering, Chungnam National University, Daejeon City, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City 30019, Republic of Korea.
| |
Collapse
|